Metabolite profiling in plasma and tissues of ob/ob and db/db mice identifies novel markers of obesity and type 2 diabetes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-09

AUTHORS

Pieter Giesbertz, Inken Padberg, Dietrich Rein, Josef Ecker, Anja S. Höfle, Britta Spanier, Hannelore Daniel

ABSTRACT

AIMS/HYPOTHESIS: Metabolomics approaches in humans have identified around 40 plasma metabolites associated with insulin resistance (IR) and type 2 diabetes, which often coincide with those for obesity. We aimed to separate diabetes-associated from obesity-associated metabolite alterations in plasma and study the impact of metabolically important tissues on plasma metabolite concentrations. METHODS: Two obese mouse models were studied; one exclusively with obesity (ob/ob) and another with type 2 diabetes (db/db). Both models have impaired leptin signalling as a cause for obesity, but the different genetic backgrounds determine the susceptibility to diabetes. In these mice, we profiled plasma, liver, skeletal muscle and adipose tissue via semi-quantitative GC-MS and quantitative liquid chromatography (LC)-MS/MS for a wide range of metabolites. RESULTS: Metabolite profiling identified 24 metabolites specifically associated with diabetes but not with obesity. Among these are known markers such as 1,5-anhydro-D-sorbitol, 3-hydroxybutyrate and the recently reported marker glyoxylate. New metabolites in the diabetic model were lysine, O-phosphotyrosine and branched-chain fatty acids. We also identified 33 metabolites that were similarly altered in both models, represented by branched-chain amino acids (BCAA) as well as glycine, serine, trans-4-hydroxyproline, and various lipid species and derivatives. Correlation analyses showed stronger associations for plasma amino acids with adipose tissue metabolites in db/db mice compared with ob/ob mice, suggesting a prominent contribution of adipose tissue to changes in plasma in a diabetic state. CONCLUSIONS/INTERPRETATION: By studying mice with metabolite signatures that resemble obesity and diabetes in humans, we have found new metabolite entities for validation in appropriate human cohorts and revealed their possible tissue of origin. More... »

PAGES

2133-2143

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00125-015-3656-y

DOI

http://dx.doi.org/10.1007/s00125-015-3656-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053312131

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26058503


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "3-Hydroxybutyric Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adipose Tissue", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diabetes Mellitus, Type 2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fatty Acids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gas Chromatography-Mass Spectrometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glyoxylates", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Insulin Resistance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Leptin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lysine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice, Inbred C57BL", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice, Obese", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscle, Skeletal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Obesity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phosphotyrosine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Transduction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sorbitol", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Department of Nutritional Physiology, Technische Universit\u00e4t M\u00fcnchen, Gregor-Mendel-Str. 2, 85350, Freising, Germany", 
            "ZIEL \u2013 Institute for Food & Health, 85350, Freising, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giesbertz", 
        "givenName": "Pieter", 
        "id": "sg:person.01133055337.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133055337.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Metanomics Health GmbH and metanomics GmbH, Biomarker Program, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Padberg", 
        "givenName": "Inken", 
        "id": "sg:person.0744347675.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744347675.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Metanomics Health GmbH and metanomics GmbH, Biomarker Program, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rein", 
        "givenName": "Dietrich", 
        "id": "sg:person.01047654460.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047654460.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Department of Nutritional Physiology, Technische Universit\u00e4t M\u00fcnchen, Gregor-Mendel-Str. 2, 85350, Freising, Germany", 
            "ZIEL \u2013 Institute for Food & Health, 85350, Freising, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ecker", 
        "givenName": "Josef", 
        "id": "sg:person.01351101267.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351101267.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Department of Nutritional Physiology, Technische Universit\u00e4t M\u00fcnchen, Gregor-Mendel-Str. 2, 85350, Freising, Germany", 
            "ZIEL \u2013 Institute for Food & Health, 85350, Freising, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00f6fle", 
        "givenName": "Anja S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Department of Nutritional Physiology, Technische Universit\u00e4t M\u00fcnchen, Gregor-Mendel-Str. 2, 85350, Freising, Germany", 
            "ZIEL \u2013 Institute for Food & Health, 85350, Freising, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spanier", 
        "givenName": "Britta", 
        "id": "sg:person.01233502107.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233502107.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Department of Nutritional Physiology, Technische Universit\u00e4t M\u00fcnchen, Gregor-Mendel-Str. 2, 85350, Freising, Germany", 
            "ZIEL \u2013 Institute for Food & Health, 85350, Freising, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Daniel", 
        "givenName": "Hannelore", 
        "id": "sg:person.0611232337.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611232337.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00277486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001170583", 
          "https://doi.org/10.1007/bf00277486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00277486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001170583", 
          "https://doi.org/10.1007/bf00277486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00277486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001170583", 
          "https://doi.org/10.1007/bf00277486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2215/cjn.02870707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001815996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm196910092811503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003075468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0006808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003104904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0954-6820.1969.tb07347.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003437020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0954-6820.1969.tb07347.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003437020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci2961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004215907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00535-013-0758-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005345690", 
          "https://doi.org/10.1007/s00535-013-0758-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpendo.00134.2007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005410517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-002-0873-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007237668", 
          "https://doi.org/10.1007/s00125-002-0873-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-002-0873-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007237668", 
          "https://doi.org/10.1007/s00125-002-0873-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmet.2007.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007688311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3945/jn.114.199190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011889776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci118951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012084014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc09-2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012255058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmet.2009.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013089119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/db13-0570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016050719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj0290640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017367945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj0290640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017367945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2012.43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017445284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2012.43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017445284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s2213-8587(13)70143-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018807494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/685204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021197007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmet.2014.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022845931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmet.2014.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022845931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0085082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030198825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01221856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030385169", 
          "https://doi.org/10.1007/bf01221856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01221856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030385169", 
          "https://doi.org/10.1007/bf01221856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01221856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030385169", 
          "https://doi.org/10.1007/bf01221856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/db05-0742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033408976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1194/jlr.m600177-jlr200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033726607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci65726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035622739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00429772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035963470", 
          "https://doi.org/10.1007/bf00429772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00429772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035963470", 
          "https://doi.org/10.1007/bf00429772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0912059107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036909726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1083/jcb.149.3.707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039031125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/meta.2003.50048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045756898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/meta.2003.50048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045756898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075306957", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075957371", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-09", 
    "datePublishedReg": "2015-09-01", 
    "description": "AIMS/HYPOTHESIS: Metabolomics approaches in humans have identified around 40 plasma metabolites associated with insulin resistance (IR) and type 2 diabetes, which often coincide with those for obesity. We aimed to separate diabetes-associated from obesity-associated metabolite alterations in plasma and study the impact of metabolically important tissues on plasma metabolite concentrations.\nMETHODS: Two obese mouse models were studied; one exclusively with obesity (ob/ob) and another with type 2 diabetes (db/db). Both models have impaired leptin signalling as a cause for obesity, but the different genetic backgrounds determine the susceptibility to diabetes. In these mice, we profiled plasma, liver, skeletal muscle and adipose tissue via semi-quantitative GC-MS and quantitative liquid chromatography (LC)-MS/MS for a wide range of metabolites.\nRESULTS: Metabolite profiling identified 24 metabolites specifically associated with diabetes but not with obesity. Among these are known markers such as 1,5-anhydro-D-sorbitol, 3-hydroxybutyrate and the recently reported marker glyoxylate. New metabolites in the diabetic model were lysine, O-phosphotyrosine and branched-chain fatty acids. We also identified 33 metabolites that were similarly altered in both models, represented by branched-chain amino acids (BCAA) as well as glycine, serine, trans-4-hydroxyproline, and various lipid species and derivatives. Correlation analyses showed stronger associations for plasma amino acids with adipose tissue metabolites in db/db mice compared with ob/ob mice, suggesting a prominent contribution of adipose tissue to changes in plasma in a diabetic state.\nCONCLUSIONS/INTERPRETATION: By studying mice with metabolite signatures that resemble obesity and diabetes in humans, we have found new metabolite entities for validation in appropriate human cohorts and revealed their possible tissue of origin.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00125-015-3656-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1001482", 
        "issn": [
          "0012-186X", 
          "1432-0428"
        ], 
        "name": "Diabetologia", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "name": "Metabolite profiling in plasma and tissues of ob/ob and db/db mice identifies novel markers of obesity and type 2 diabetes", 
    "pagination": "2133-2143", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fdefc24a29ee7c2a0e40987741dabe13f42b02ac51d7344b501b95b7dd0e00ff"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26058503"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0006777"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00125-015-3656-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053312131"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00125-015-3656-y", 
      "https://app.dimensions.ai/details/publication/pub.1053312131"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113640_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00125-015-3656-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00125-015-3656-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00125-015-3656-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00125-015-3656-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00125-015-3656-y'


 

This table displays all metadata directly associated to this object as RDF triples.

303 TRIPLES      21 PREDICATES      83 URIs      44 LITERALS      32 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00125-015-3656-y schema:about N0144e83e2ff24e528e46fd76e6f906cd
2 N04e6bc8f7c6f48258eeaefe98aa2a444
3 N126fd404000641e0a0c00eeb3daca423
4 N18de21f5bec84eb1abe325cf66ddbca1
5 N25fa008a7cfb4bb3a84f514a2b986894
6 N276ea7d9135543a7b4769f780d618a1b
7 N28fc5886af554f25bdbd355c524bea35
8 N2d342a9872d94a108462df7ec84f2dd1
9 N31a481e649204dbfa183cb3061994bc7
10 N43efe3bd2bde4cce96e1426b06be40b2
11 N4f033df6d3ec434382de46fbdca6c059
12 N601db146f8b344f99e7ab8c2d5221efa
13 N6f443451ba654cb59e4751960756eb25
14 N7cc0a532e8aa4744976126ff81c9648f
15 N83ae688763274253992a5d5b25be267f
16 N8d8ac51e67784c5fa6facc48e1b5e9a6
17 Nab0dd8af03884b6f9a15e52330434112
18 Nab5bcb1d2e844f00b1551db4271b70a5
19 Nb69ba2930e704970a0c6aab128f9cc01
20 Nc1ab3cbeccc848398c7e01fe1b33187b
21 Ne796a46c53f84a23a672420739e13554
22 Nf6531ff52eee409b98a531d264b49e29
23 Nfbfe46f56fae44489b23fc858c9f54ce
24 anzsrc-for:11
25 anzsrc-for:1103
26 schema:author Nea6872d450144c49a8588f69a4522556
27 schema:citation sg:pub.10.1007/bf00277486
28 sg:pub.10.1007/bf00429772
29 sg:pub.10.1007/bf01221856
30 sg:pub.10.1007/s00125-002-0873-y
31 sg:pub.10.1007/s00535-013-0758-5
32 https://app.dimensions.ai/details/publication/pub.1075306957
33 https://app.dimensions.ai/details/publication/pub.1075957371
34 https://doi.org/10.1016/j.cmet.2007.12.009
35 https://doi.org/10.1016/j.cmet.2009.02.002
36 https://doi.org/10.1016/j.cmet.2014.09.003
37 https://doi.org/10.1016/s2213-8587(13)70143-8
38 https://doi.org/10.1038/msb.2012.43
39 https://doi.org/10.1042/bj0290640
40 https://doi.org/10.1053/meta.2003.50048
41 https://doi.org/10.1056/nejm196910092811503
42 https://doi.org/10.1073/pnas.0912059107
43 https://doi.org/10.1083/jcb.149.3.707
44 https://doi.org/10.1111/j.0954-6820.1969.tb07347.x
45 https://doi.org/10.1152/ajpendo.00134.2007
46 https://doi.org/10.1155/2014/685204
47 https://doi.org/10.1172/jci118951
48 https://doi.org/10.1172/jci2961
49 https://doi.org/10.1172/jci65726
50 https://doi.org/10.1194/jlr.m600177-jlr200
51 https://doi.org/10.1371/journal.pone.0006808
52 https://doi.org/10.1371/journal.pone.0085082
53 https://doi.org/10.2215/cjn.02870707
54 https://doi.org/10.2337/db05-0742
55 https://doi.org/10.2337/db13-0570
56 https://doi.org/10.2337/dc09-2013
57 https://doi.org/10.3945/jn.114.199190
58 schema:datePublished 2015-09
59 schema:datePublishedReg 2015-09-01
60 schema:description AIMS/HYPOTHESIS: Metabolomics approaches in humans have identified around 40 plasma metabolites associated with insulin resistance (IR) and type 2 diabetes, which often coincide with those for obesity. We aimed to separate diabetes-associated from obesity-associated metabolite alterations in plasma and study the impact of metabolically important tissues on plasma metabolite concentrations. METHODS: Two obese mouse models were studied; one exclusively with obesity (ob/ob) and another with type 2 diabetes (db/db). Both models have impaired leptin signalling as a cause for obesity, but the different genetic backgrounds determine the susceptibility to diabetes. In these mice, we profiled plasma, liver, skeletal muscle and adipose tissue via semi-quantitative GC-MS and quantitative liquid chromatography (LC)-MS/MS for a wide range of metabolites. RESULTS: Metabolite profiling identified 24 metabolites specifically associated with diabetes but not with obesity. Among these are known markers such as 1,5-anhydro-D-sorbitol, 3-hydroxybutyrate and the recently reported marker glyoxylate. New metabolites in the diabetic model were lysine, O-phosphotyrosine and branched-chain fatty acids. We also identified 33 metabolites that were similarly altered in both models, represented by branched-chain amino acids (BCAA) as well as glycine, serine, trans-4-hydroxyproline, and various lipid species and derivatives. Correlation analyses showed stronger associations for plasma amino acids with adipose tissue metabolites in db/db mice compared with ob/ob mice, suggesting a prominent contribution of adipose tissue to changes in plasma in a diabetic state. CONCLUSIONS/INTERPRETATION: By studying mice with metabolite signatures that resemble obesity and diabetes in humans, we have found new metabolite entities for validation in appropriate human cohorts and revealed their possible tissue of origin.
61 schema:genre research_article
62 schema:inLanguage en
63 schema:isAccessibleForFree true
64 schema:isPartOf N09366296c1b84e5cb78766c0b42eed07
65 N8345cec277294e0093bcd6e213ff2296
66 sg:journal.1001482
67 schema:name Metabolite profiling in plasma and tissues of ob/ob and db/db mice identifies novel markers of obesity and type 2 diabetes
68 schema:pagination 2133-2143
69 schema:productId N7af73e843a014e4882646a46bd871408
70 N7fa9052e64da46cf8da6fa28ed9dba14
71 N8db2b55e7746492ca26d5a96420ab8c4
72 N9eed2a9110ee4af78031a4193569133c
73 Ne68065ebb4384cfca99396b72fe1672f
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053312131
75 https://doi.org/10.1007/s00125-015-3656-y
76 schema:sdDatePublished 2019-04-11T10:28
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher Na7dc238445c740c49194175bb6d54d64
79 schema:url https://link.springer.com/10.1007%2Fs00125-015-3656-y
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N0144e83e2ff24e528e46fd76e6f906cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Leptin
85 rdf:type schema:DefinedTerm
86 N04e6bc8f7c6f48258eeaefe98aa2a444 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Male
88 rdf:type schema:DefinedTerm
89 N09366296c1b84e5cb78766c0b42eed07 schema:issueNumber 9
90 rdf:type schema:PublicationIssue
91 N126fd404000641e0a0c00eeb3daca423 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Glyoxylates
93 rdf:type schema:DefinedTerm
94 N18de21f5bec84eb1abe325cf66ddbca1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Obesity
96 rdf:type schema:DefinedTerm
97 N25fa008a7cfb4bb3a84f514a2b986894 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Insulin Resistance
99 rdf:type schema:DefinedTerm
100 N276ea7d9135543a7b4769f780d618a1b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Phosphotyrosine
102 rdf:type schema:DefinedTerm
103 N28fc5886af554f25bdbd355c524bea35 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Diabetes Mellitus, Type 2
105 rdf:type schema:DefinedTerm
106 N2d342a9872d94a108462df7ec84f2dd1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Sorbitol
108 rdf:type schema:DefinedTerm
109 N2fb4b5690cff42bc95f194303347c755 rdf:first sg:person.0611232337.59
110 rdf:rest rdf:nil
111 N31a481e649204dbfa183cb3061994bc7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Adipose Tissue
113 rdf:type schema:DefinedTerm
114 N35869a0d685149399820d3b4834b60f3 rdf:first sg:person.01351101267.06
115 rdf:rest N43201fac9d574a22aa70088af3cac7d4
116 N43201fac9d574a22aa70088af3cac7d4 rdf:first N684d87ed36af4ff0b1a2725fd4414e89
117 rdf:rest N84e6df02eba24e938c7ee5ec9936b758
118 N43efe3bd2bde4cce96e1426b06be40b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Signal Transduction
120 rdf:type schema:DefinedTerm
121 N4f033df6d3ec434382de46fbdca6c059 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Gas Chromatography-Mass Spectrometry
123 rdf:type schema:DefinedTerm
124 N58f7f4c36b0d4a8fad59f9640f196b19 rdf:first sg:person.01047654460.25
125 rdf:rest N35869a0d685149399820d3b4834b60f3
126 N601db146f8b344f99e7ab8c2d5221efa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name 3-Hydroxybutyric Acid
128 rdf:type schema:DefinedTerm
129 N684d87ed36af4ff0b1a2725fd4414e89 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
130 schema:familyName Höfle
131 schema:givenName Anja S.
132 rdf:type schema:Person
133 N6f443451ba654cb59e4751960756eb25 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Liver
135 rdf:type schema:DefinedTerm
136 N7af73e843a014e4882646a46bd871408 schema:name doi
137 schema:value 10.1007/s00125-015-3656-y
138 rdf:type schema:PropertyValue
139 N7cc0a532e8aa4744976126ff81c9648f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Mice, Obese
141 rdf:type schema:DefinedTerm
142 N7fa9052e64da46cf8da6fa28ed9dba14 schema:name pubmed_id
143 schema:value 26058503
144 rdf:type schema:PropertyValue
145 N8345cec277294e0093bcd6e213ff2296 schema:volumeNumber 58
146 rdf:type schema:PublicationVolume
147 N83ae688763274253992a5d5b25be267f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Gene Expression Regulation
149 rdf:type schema:DefinedTerm
150 N84e6df02eba24e938c7ee5ec9936b758 rdf:first sg:person.01233502107.10
151 rdf:rest N2fb4b5690cff42bc95f194303347c755
152 N87a236a590794fa98b4dd918b9050e80 schema:name Metanomics Health GmbH and metanomics GmbH, Biomarker Program, Berlin, Germany
153 rdf:type schema:Organization
154 N8d8ac51e67784c5fa6facc48e1b5e9a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Fatty Acids
156 rdf:type schema:DefinedTerm
157 N8db2b55e7746492ca26d5a96420ab8c4 schema:name dimensions_id
158 schema:value pub.1053312131
159 rdf:type schema:PropertyValue
160 N9a062c33cd0442f2832407fd7412b9c4 rdf:first sg:person.0744347675.80
161 rdf:rest N58f7f4c36b0d4a8fad59f9640f196b19
162 N9eed2a9110ee4af78031a4193569133c schema:name nlm_unique_id
163 schema:value 0006777
164 rdf:type schema:PropertyValue
165 Na7dc238445c740c49194175bb6d54d64 schema:name Springer Nature - SN SciGraph project
166 rdf:type schema:Organization
167 Naa8ab7de5b7d4d138f1ec0f0fc5ea036 schema:name Metanomics Health GmbH and metanomics GmbH, Biomarker Program, Berlin, Germany
168 rdf:type schema:Organization
169 Nab0dd8af03884b6f9a15e52330434112 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Metabolome
171 rdf:type schema:DefinedTerm
172 Nab5bcb1d2e844f00b1551db4271b70a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Metabolomics
174 rdf:type schema:DefinedTerm
175 Nb69ba2930e704970a0c6aab128f9cc01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Muscle, Skeletal
177 rdf:type schema:DefinedTerm
178 Nc1ab3cbeccc848398c7e01fe1b33187b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Mice, Inbred C57BL
180 rdf:type schema:DefinedTerm
181 Ne68065ebb4384cfca99396b72fe1672f schema:name readcube_id
182 schema:value fdefc24a29ee7c2a0e40987741dabe13f42b02ac51d7344b501b95b7dd0e00ff
183 rdf:type schema:PropertyValue
184 Ne796a46c53f84a23a672420739e13554 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Mice
186 rdf:type schema:DefinedTerm
187 Nea6872d450144c49a8588f69a4522556 rdf:first sg:person.01133055337.63
188 rdf:rest N9a062c33cd0442f2832407fd7412b9c4
189 Nf6531ff52eee409b98a531d264b49e29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Animals
191 rdf:type schema:DefinedTerm
192 Nfbfe46f56fae44489b23fc858c9f54ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Lysine
194 rdf:type schema:DefinedTerm
195 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
196 schema:name Medical and Health Sciences
197 rdf:type schema:DefinedTerm
198 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
199 schema:name Clinical Sciences
200 rdf:type schema:DefinedTerm
201 sg:journal.1001482 schema:issn 0012-186X
202 1432-0428
203 schema:name Diabetologia
204 rdf:type schema:Periodical
205 sg:person.01047654460.25 schema:affiliation Naa8ab7de5b7d4d138f1ec0f0fc5ea036
206 schema:familyName Rein
207 schema:givenName Dietrich
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047654460.25
209 rdf:type schema:Person
210 sg:person.01133055337.63 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
211 schema:familyName Giesbertz
212 schema:givenName Pieter
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133055337.63
214 rdf:type schema:Person
215 sg:person.01233502107.10 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
216 schema:familyName Spanier
217 schema:givenName Britta
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233502107.10
219 rdf:type schema:Person
220 sg:person.01351101267.06 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
221 schema:familyName Ecker
222 schema:givenName Josef
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351101267.06
224 rdf:type schema:Person
225 sg:person.0611232337.59 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
226 schema:familyName Daniel
227 schema:givenName Hannelore
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611232337.59
229 rdf:type schema:Person
230 sg:person.0744347675.80 schema:affiliation N87a236a590794fa98b4dd918b9050e80
231 schema:familyName Padberg
232 schema:givenName Inken
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744347675.80
234 rdf:type schema:Person
235 sg:pub.10.1007/bf00277486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001170583
236 https://doi.org/10.1007/bf00277486
237 rdf:type schema:CreativeWork
238 sg:pub.10.1007/bf00429772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035963470
239 https://doi.org/10.1007/bf00429772
240 rdf:type schema:CreativeWork
241 sg:pub.10.1007/bf01221856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030385169
242 https://doi.org/10.1007/bf01221856
243 rdf:type schema:CreativeWork
244 sg:pub.10.1007/s00125-002-0873-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1007237668
245 https://doi.org/10.1007/s00125-002-0873-y
246 rdf:type schema:CreativeWork
247 sg:pub.10.1007/s00535-013-0758-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005345690
248 https://doi.org/10.1007/s00535-013-0758-5
249 rdf:type schema:CreativeWork
250 https://app.dimensions.ai/details/publication/pub.1075306957 schema:CreativeWork
251 https://app.dimensions.ai/details/publication/pub.1075957371 schema:CreativeWork
252 https://doi.org/10.1016/j.cmet.2007.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007688311
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1016/j.cmet.2009.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013089119
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1016/j.cmet.2014.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022845931
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1016/s2213-8587(13)70143-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018807494
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1038/msb.2012.43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017445284
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1042/bj0290640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017367945
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1053/meta.2003.50048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045756898
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1056/nejm196910092811503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003075468
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1073/pnas.0912059107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036909726
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1083/jcb.149.3.707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039031125
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1111/j.0954-6820.1969.tb07347.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003437020
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1152/ajpendo.00134.2007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005410517
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1155/2014/685204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021197007
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1172/jci118951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012084014
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1172/jci2961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004215907
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1172/jci65726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035622739
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1194/jlr.m600177-jlr200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033726607
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1371/journal.pone.0006808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003104904
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1371/journal.pone.0085082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030198825
289 rdf:type schema:CreativeWork
290 https://doi.org/10.2215/cjn.02870707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001815996
291 rdf:type schema:CreativeWork
292 https://doi.org/10.2337/db05-0742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033408976
293 rdf:type schema:CreativeWork
294 https://doi.org/10.2337/db13-0570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016050719
295 rdf:type schema:CreativeWork
296 https://doi.org/10.2337/dc09-2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012255058
297 rdf:type schema:CreativeWork
298 https://doi.org/10.3945/jn.114.199190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011889776
299 rdf:type schema:CreativeWork
300 https://www.grid.ac/institutes/grid.6936.a schema:alternateName Technical University Munich
301 schema:name Department of Nutritional Physiology, Technische Universität München, Gregor-Mendel-Str. 2, 85350, Freising, Germany
302 ZIEL – Institute for Food & Health, 85350, Freising, Germany
303 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...