Metabolite profiling in plasma and tissues of ob/ob and db/db mice identifies novel markers of obesity and type 2 diabetes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-09

AUTHORS

Pieter Giesbertz, Inken Padberg, Dietrich Rein, Josef Ecker, Anja S. Höfle, Britta Spanier, Hannelore Daniel

ABSTRACT

AIMS/HYPOTHESIS: Metabolomics approaches in humans have identified around 40 plasma metabolites associated with insulin resistance (IR) and type 2 diabetes, which often coincide with those for obesity. We aimed to separate diabetes-associated from obesity-associated metabolite alterations in plasma and study the impact of metabolically important tissues on plasma metabolite concentrations. METHODS: Two obese mouse models were studied; one exclusively with obesity (ob/ob) and another with type 2 diabetes (db/db). Both models have impaired leptin signalling as a cause for obesity, but the different genetic backgrounds determine the susceptibility to diabetes. In these mice, we profiled plasma, liver, skeletal muscle and adipose tissue via semi-quantitative GC-MS and quantitative liquid chromatography (LC)-MS/MS for a wide range of metabolites. RESULTS: Metabolite profiling identified 24 metabolites specifically associated with diabetes but not with obesity. Among these are known markers such as 1,5-anhydro-D-sorbitol, 3-hydroxybutyrate and the recently reported marker glyoxylate. New metabolites in the diabetic model were lysine, O-phosphotyrosine and branched-chain fatty acids. We also identified 33 metabolites that were similarly altered in both models, represented by branched-chain amino acids (BCAA) as well as glycine, serine, trans-4-hydroxyproline, and various lipid species and derivatives. Correlation analyses showed stronger associations for plasma amino acids with adipose tissue metabolites in db/db mice compared with ob/ob mice, suggesting a prominent contribution of adipose tissue to changes in plasma in a diabetic state. CONCLUSIONS/INTERPRETATION: By studying mice with metabolite signatures that resemble obesity and diabetes in humans, we have found new metabolite entities for validation in appropriate human cohorts and revealed their possible tissue of origin. More... »

PAGES

2133-2143

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00125-015-3656-y

DOI

http://dx.doi.org/10.1007/s00125-015-3656-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053312131

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26058503


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "3-Hydroxybutyric Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adipose Tissue", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diabetes Mellitus, Type 2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fatty Acids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gas Chromatography-Mass Spectrometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glyoxylates", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Insulin Resistance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Leptin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lysine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice, Inbred C57BL", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice, Obese", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscle, Skeletal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Obesity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phosphotyrosine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Transduction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sorbitol", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Department of Nutritional Physiology, Technische Universit\u00e4t M\u00fcnchen, Gregor-Mendel-Str. 2, 85350, Freising, Germany", 
            "ZIEL \u2013 Institute for Food & Health, 85350, Freising, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giesbertz", 
        "givenName": "Pieter", 
        "id": "sg:person.01133055337.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133055337.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Metanomics Health GmbH and metanomics GmbH, Biomarker Program, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Padberg", 
        "givenName": "Inken", 
        "id": "sg:person.0744347675.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744347675.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Metanomics Health GmbH and metanomics GmbH, Biomarker Program, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rein", 
        "givenName": "Dietrich", 
        "id": "sg:person.01047654460.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047654460.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Department of Nutritional Physiology, Technische Universit\u00e4t M\u00fcnchen, Gregor-Mendel-Str. 2, 85350, Freising, Germany", 
            "ZIEL \u2013 Institute for Food & Health, 85350, Freising, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ecker", 
        "givenName": "Josef", 
        "id": "sg:person.01351101267.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351101267.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Department of Nutritional Physiology, Technische Universit\u00e4t M\u00fcnchen, Gregor-Mendel-Str. 2, 85350, Freising, Germany", 
            "ZIEL \u2013 Institute for Food & Health, 85350, Freising, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00f6fle", 
        "givenName": "Anja S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Department of Nutritional Physiology, Technische Universit\u00e4t M\u00fcnchen, Gregor-Mendel-Str. 2, 85350, Freising, Germany", 
            "ZIEL \u2013 Institute for Food & Health, 85350, Freising, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spanier", 
        "givenName": "Britta", 
        "id": "sg:person.01233502107.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233502107.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Department of Nutritional Physiology, Technische Universit\u00e4t M\u00fcnchen, Gregor-Mendel-Str. 2, 85350, Freising, Germany", 
            "ZIEL \u2013 Institute for Food & Health, 85350, Freising, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Daniel", 
        "givenName": "Hannelore", 
        "id": "sg:person.0611232337.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611232337.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00277486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001170583", 
          "https://doi.org/10.1007/bf00277486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00277486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001170583", 
          "https://doi.org/10.1007/bf00277486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00277486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001170583", 
          "https://doi.org/10.1007/bf00277486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2215/cjn.02870707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001815996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm196910092811503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003075468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0006808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003104904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0954-6820.1969.tb07347.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003437020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0954-6820.1969.tb07347.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003437020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci2961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004215907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00535-013-0758-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005345690", 
          "https://doi.org/10.1007/s00535-013-0758-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpendo.00134.2007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005410517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-002-0873-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007237668", 
          "https://doi.org/10.1007/s00125-002-0873-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-002-0873-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007237668", 
          "https://doi.org/10.1007/s00125-002-0873-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmet.2007.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007688311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3945/jn.114.199190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011889776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci118951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012084014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc09-2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012255058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmet.2009.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013089119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/db13-0570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016050719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj0290640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017367945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj0290640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017367945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2012.43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017445284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2012.43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017445284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s2213-8587(13)70143-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018807494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/685204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021197007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmet.2014.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022845931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmet.2014.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022845931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0085082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030198825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01221856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030385169", 
          "https://doi.org/10.1007/bf01221856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01221856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030385169", 
          "https://doi.org/10.1007/bf01221856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01221856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030385169", 
          "https://doi.org/10.1007/bf01221856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/db05-0742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033408976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1194/jlr.m600177-jlr200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033726607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci65726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035622739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00429772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035963470", 
          "https://doi.org/10.1007/bf00429772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00429772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035963470", 
          "https://doi.org/10.1007/bf00429772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0912059107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036909726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1083/jcb.149.3.707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039031125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/meta.2003.50048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045756898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/meta.2003.50048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045756898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075306957", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075957371", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-09", 
    "datePublishedReg": "2015-09-01", 
    "description": "AIMS/HYPOTHESIS: Metabolomics approaches in humans have identified around 40 plasma metabolites associated with insulin resistance (IR) and type 2 diabetes, which often coincide with those for obesity. We aimed to separate diabetes-associated from obesity-associated metabolite alterations in plasma and study the impact of metabolically important tissues on plasma metabolite concentrations.\nMETHODS: Two obese mouse models were studied; one exclusively with obesity (ob/ob) and another with type 2 diabetes (db/db). Both models have impaired leptin signalling as a cause for obesity, but the different genetic backgrounds determine the susceptibility to diabetes. In these mice, we profiled plasma, liver, skeletal muscle and adipose tissue via semi-quantitative GC-MS and quantitative liquid chromatography (LC)-MS/MS for a wide range of metabolites.\nRESULTS: Metabolite profiling identified 24 metabolites specifically associated with diabetes but not with obesity. Among these are known markers such as 1,5-anhydro-D-sorbitol, 3-hydroxybutyrate and the recently reported marker glyoxylate. New metabolites in the diabetic model were lysine, O-phosphotyrosine and branched-chain fatty acids. We also identified 33 metabolites that were similarly altered in both models, represented by branched-chain amino acids (BCAA) as well as glycine, serine, trans-4-hydroxyproline, and various lipid species and derivatives. Correlation analyses showed stronger associations for plasma amino acids with adipose tissue metabolites in db/db mice compared with ob/ob mice, suggesting a prominent contribution of adipose tissue to changes in plasma in a diabetic state.\nCONCLUSIONS/INTERPRETATION: By studying mice with metabolite signatures that resemble obesity and diabetes in humans, we have found new metabolite entities for validation in appropriate human cohorts and revealed their possible tissue of origin.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00125-015-3656-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1001482", 
        "issn": [
          "0012-186X", 
          "1432-0428"
        ], 
        "name": "Diabetologia", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "name": "Metabolite profiling in plasma and tissues of ob/ob and db/db mice identifies novel markers of obesity and type 2 diabetes", 
    "pagination": "2133-2143", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fdefc24a29ee7c2a0e40987741dabe13f42b02ac51d7344b501b95b7dd0e00ff"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26058503"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0006777"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00125-015-3656-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053312131"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00125-015-3656-y", 
      "https://app.dimensions.ai/details/publication/pub.1053312131"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113640_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00125-015-3656-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00125-015-3656-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00125-015-3656-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00125-015-3656-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00125-015-3656-y'


 

This table displays all metadata directly associated to this object as RDF triples.

303 TRIPLES      21 PREDICATES      83 URIs      44 LITERALS      32 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00125-015-3656-y schema:about N002df52473f142649bbdb01642d09ecb
2 N0e35eeb063be40daa165cc9ee13e33ae
3 N0e5c72f839014caf8d556bde8c3e617b
4 N1b24c0e12eb64d36a47d4ef501805bc2
5 N219f8dc2d6824433927b69dc657ee436
6 N2e49419b7495406791a62f77b7affbaa
7 N368fb024d77e4a108a673f3a49f26187
8 N42b3bb58a5284140aae686c6f3ff25da
9 N46eb6eeaf7434dd1a2eb02f0bbbe76a7
10 N4e0410feca304dd8a28104c9ea03ce0d
11 N5a3d15ec12774cb58df5275d0f463592
12 N5e5888d480304ff2a5fe13c2343fc25a
13 N72b36b4b2f3b4630a72e976e55306335
14 N75d11a612fa5487d9e6fa52d4ba63f60
15 N7f4d1df872a94ae1b0e500bf1dd1288c
16 N9a4625b82a454969b56573aa43693908
17 Na23087ddf7d84ee9b8235ec1faf1a26c
18 Naecb74815d3b4404bfba57fea47ecdf1
19 Nc6bc298451d24860980b3316d0930e1c
20 Ndf32c4f6a4934cd6bb5248d74a303832
21 Nec3a2a9478314a4f9312ea10d78acc23
22 Nf4e5156c75c947b591c5e2bda7473489
23 Nfd2d112d4bfb4fbeaae918d5654d2f7b
24 anzsrc-for:11
25 anzsrc-for:1103
26 schema:author Nd012ee84b7b440139ff63f2f75995aa0
27 schema:citation sg:pub.10.1007/bf00277486
28 sg:pub.10.1007/bf00429772
29 sg:pub.10.1007/bf01221856
30 sg:pub.10.1007/s00125-002-0873-y
31 sg:pub.10.1007/s00535-013-0758-5
32 https://app.dimensions.ai/details/publication/pub.1075306957
33 https://app.dimensions.ai/details/publication/pub.1075957371
34 https://doi.org/10.1016/j.cmet.2007.12.009
35 https://doi.org/10.1016/j.cmet.2009.02.002
36 https://doi.org/10.1016/j.cmet.2014.09.003
37 https://doi.org/10.1016/s2213-8587(13)70143-8
38 https://doi.org/10.1038/msb.2012.43
39 https://doi.org/10.1042/bj0290640
40 https://doi.org/10.1053/meta.2003.50048
41 https://doi.org/10.1056/nejm196910092811503
42 https://doi.org/10.1073/pnas.0912059107
43 https://doi.org/10.1083/jcb.149.3.707
44 https://doi.org/10.1111/j.0954-6820.1969.tb07347.x
45 https://doi.org/10.1152/ajpendo.00134.2007
46 https://doi.org/10.1155/2014/685204
47 https://doi.org/10.1172/jci118951
48 https://doi.org/10.1172/jci2961
49 https://doi.org/10.1172/jci65726
50 https://doi.org/10.1194/jlr.m600177-jlr200
51 https://doi.org/10.1371/journal.pone.0006808
52 https://doi.org/10.1371/journal.pone.0085082
53 https://doi.org/10.2215/cjn.02870707
54 https://doi.org/10.2337/db05-0742
55 https://doi.org/10.2337/db13-0570
56 https://doi.org/10.2337/dc09-2013
57 https://doi.org/10.3945/jn.114.199190
58 schema:datePublished 2015-09
59 schema:datePublishedReg 2015-09-01
60 schema:description AIMS/HYPOTHESIS: Metabolomics approaches in humans have identified around 40 plasma metabolites associated with insulin resistance (IR) and type 2 diabetes, which often coincide with those for obesity. We aimed to separate diabetes-associated from obesity-associated metabolite alterations in plasma and study the impact of metabolically important tissues on plasma metabolite concentrations. METHODS: Two obese mouse models were studied; one exclusively with obesity (ob/ob) and another with type 2 diabetes (db/db). Both models have impaired leptin signalling as a cause for obesity, but the different genetic backgrounds determine the susceptibility to diabetes. In these mice, we profiled plasma, liver, skeletal muscle and adipose tissue via semi-quantitative GC-MS and quantitative liquid chromatography (LC)-MS/MS for a wide range of metabolites. RESULTS: Metabolite profiling identified 24 metabolites specifically associated with diabetes but not with obesity. Among these are known markers such as 1,5-anhydro-D-sorbitol, 3-hydroxybutyrate and the recently reported marker glyoxylate. New metabolites in the diabetic model were lysine, O-phosphotyrosine and branched-chain fatty acids. We also identified 33 metabolites that were similarly altered in both models, represented by branched-chain amino acids (BCAA) as well as glycine, serine, trans-4-hydroxyproline, and various lipid species and derivatives. Correlation analyses showed stronger associations for plasma amino acids with adipose tissue metabolites in db/db mice compared with ob/ob mice, suggesting a prominent contribution of adipose tissue to changes in plasma in a diabetic state. CONCLUSIONS/INTERPRETATION: By studying mice with metabolite signatures that resemble obesity and diabetes in humans, we have found new metabolite entities for validation in appropriate human cohorts and revealed their possible tissue of origin.
61 schema:genre research_article
62 schema:inLanguage en
63 schema:isAccessibleForFree true
64 schema:isPartOf Ne7cfb53a379748e581084a92f2ed98d4
65 Neb938e0369e649f7bb958c562fbc9cda
66 sg:journal.1001482
67 schema:name Metabolite profiling in plasma and tissues of ob/ob and db/db mice identifies novel markers of obesity and type 2 diabetes
68 schema:pagination 2133-2143
69 schema:productId N033437915cf64c7392d87a2bbf778637
70 N25a6d09c3513416da8ea81e2995cd659
71 N76a4b2bd78304bb0beec02ad4da19868
72 N8857b30011f94060b4c886815dbfebe1
73 Ne4b7904128694968886c7b5ce7f432b6
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053312131
75 https://doi.org/10.1007/s00125-015-3656-y
76 schema:sdDatePublished 2019-04-11T10:28
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher Ndeaa0572beb24f07931d15c25f26bf17
79 schema:url https://link.springer.com/10.1007%2Fs00125-015-3656-y
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N002df52473f142649bbdb01642d09ecb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Insulin Resistance
85 rdf:type schema:DefinedTerm
86 N033437915cf64c7392d87a2bbf778637 schema:name pubmed_id
87 schema:value 26058503
88 rdf:type schema:PropertyValue
89 N063b2d2e164b4cb3bc95847771b2973a schema:name Metanomics Health GmbH and metanomics GmbH, Biomarker Program, Berlin, Germany
90 rdf:type schema:Organization
91 N0e35eeb063be40daa165cc9ee13e33ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Glyoxylates
93 rdf:type schema:DefinedTerm
94 N0e5c72f839014caf8d556bde8c3e617b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Mice, Inbred C57BL
96 rdf:type schema:DefinedTerm
97 N16dca837111543dfb93b655316358dfc rdf:first sg:person.01233502107.10
98 rdf:rest N2aceeaba5f454b62aa06314b0f6ead36
99 N1b24c0e12eb64d36a47d4ef501805bc2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name 3-Hydroxybutyric Acid
101 rdf:type schema:DefinedTerm
102 N219f8dc2d6824433927b69dc657ee436 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Male
104 rdf:type schema:DefinedTerm
105 N25a6d09c3513416da8ea81e2995cd659 schema:name doi
106 schema:value 10.1007/s00125-015-3656-y
107 rdf:type schema:PropertyValue
108 N2aceeaba5f454b62aa06314b0f6ead36 rdf:first sg:person.0611232337.59
109 rdf:rest rdf:nil
110 N2e49419b7495406791a62f77b7affbaa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Muscle, Skeletal
112 rdf:type schema:DefinedTerm
113 N2ed3a7cf8303404c989c019305078b7b rdf:first sg:person.0744347675.80
114 rdf:rest Ne2256adef5b04d0baaaa3c56ad50ee73
115 N368fb024d77e4a108a673f3a49f26187 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Diabetes Mellitus, Type 2
117 rdf:type schema:DefinedTerm
118 N42b3bb58a5284140aae686c6f3ff25da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Mice
120 rdf:type schema:DefinedTerm
121 N46eb6eeaf7434dd1a2eb02f0bbbe76a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Adipose Tissue
123 rdf:type schema:DefinedTerm
124 N4e0410feca304dd8a28104c9ea03ce0d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Liver
126 rdf:type schema:DefinedTerm
127 N5a3d15ec12774cb58df5275d0f463592 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Lysine
129 rdf:type schema:DefinedTerm
130 N5e5888d480304ff2a5fe13c2343fc25a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Animals
132 rdf:type schema:DefinedTerm
133 N68a989ecccfc40738e9f4c63a821d373 rdf:first sg:person.01351101267.06
134 rdf:rest N9a8dd069a803475dbe390194c5fd40ac
135 N6ae47258d3774986ab058e0046d7eb11 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
136 schema:familyName Höfle
137 schema:givenName Anja S.
138 rdf:type schema:Person
139 N72b36b4b2f3b4630a72e976e55306335 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Signal Transduction
141 rdf:type schema:DefinedTerm
142 N75d11a612fa5487d9e6fa52d4ba63f60 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Mice, Obese
144 rdf:type schema:DefinedTerm
145 N76a4b2bd78304bb0beec02ad4da19868 schema:name dimensions_id
146 schema:value pub.1053312131
147 rdf:type schema:PropertyValue
148 N7f4d1df872a94ae1b0e500bf1dd1288c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Leptin
150 rdf:type schema:DefinedTerm
151 N8857b30011f94060b4c886815dbfebe1 schema:name readcube_id
152 schema:value fdefc24a29ee7c2a0e40987741dabe13f42b02ac51d7344b501b95b7dd0e00ff
153 rdf:type schema:PropertyValue
154 N9a4625b82a454969b56573aa43693908 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Phosphotyrosine
156 rdf:type schema:DefinedTerm
157 N9a8dd069a803475dbe390194c5fd40ac rdf:first N6ae47258d3774986ab058e0046d7eb11
158 rdf:rest N16dca837111543dfb93b655316358dfc
159 Na23087ddf7d84ee9b8235ec1faf1a26c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Obesity
161 rdf:type schema:DefinedTerm
162 Naecb74815d3b4404bfba57fea47ecdf1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Metabolomics
164 rdf:type schema:DefinedTerm
165 Nc6bc298451d24860980b3316d0930e1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Gene Expression Regulation
167 rdf:type schema:DefinedTerm
168 Nd012ee84b7b440139ff63f2f75995aa0 rdf:first sg:person.01133055337.63
169 rdf:rest N2ed3a7cf8303404c989c019305078b7b
170 Nd306e693be0a4c3c9c0f474d6222c451 schema:name Metanomics Health GmbH and metanomics GmbH, Biomarker Program, Berlin, Germany
171 rdf:type schema:Organization
172 Ndeaa0572beb24f07931d15c25f26bf17 schema:name Springer Nature - SN SciGraph project
173 rdf:type schema:Organization
174 Ndf32c4f6a4934cd6bb5248d74a303832 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Gas Chromatography-Mass Spectrometry
176 rdf:type schema:DefinedTerm
177 Ne2256adef5b04d0baaaa3c56ad50ee73 rdf:first sg:person.01047654460.25
178 rdf:rest N68a989ecccfc40738e9f4c63a821d373
179 Ne4b7904128694968886c7b5ce7f432b6 schema:name nlm_unique_id
180 schema:value 0006777
181 rdf:type schema:PropertyValue
182 Ne7cfb53a379748e581084a92f2ed98d4 schema:issueNumber 9
183 rdf:type schema:PublicationIssue
184 Neb938e0369e649f7bb958c562fbc9cda schema:volumeNumber 58
185 rdf:type schema:PublicationVolume
186 Nec3a2a9478314a4f9312ea10d78acc23 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Fatty Acids
188 rdf:type schema:DefinedTerm
189 Nf4e5156c75c947b591c5e2bda7473489 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Sorbitol
191 rdf:type schema:DefinedTerm
192 Nfd2d112d4bfb4fbeaae918d5654d2f7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Metabolome
194 rdf:type schema:DefinedTerm
195 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
196 schema:name Medical and Health Sciences
197 rdf:type schema:DefinedTerm
198 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
199 schema:name Clinical Sciences
200 rdf:type schema:DefinedTerm
201 sg:journal.1001482 schema:issn 0012-186X
202 1432-0428
203 schema:name Diabetologia
204 rdf:type schema:Periodical
205 sg:person.01047654460.25 schema:affiliation N063b2d2e164b4cb3bc95847771b2973a
206 schema:familyName Rein
207 schema:givenName Dietrich
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047654460.25
209 rdf:type schema:Person
210 sg:person.01133055337.63 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
211 schema:familyName Giesbertz
212 schema:givenName Pieter
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133055337.63
214 rdf:type schema:Person
215 sg:person.01233502107.10 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
216 schema:familyName Spanier
217 schema:givenName Britta
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233502107.10
219 rdf:type schema:Person
220 sg:person.01351101267.06 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
221 schema:familyName Ecker
222 schema:givenName Josef
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351101267.06
224 rdf:type schema:Person
225 sg:person.0611232337.59 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
226 schema:familyName Daniel
227 schema:givenName Hannelore
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611232337.59
229 rdf:type schema:Person
230 sg:person.0744347675.80 schema:affiliation Nd306e693be0a4c3c9c0f474d6222c451
231 schema:familyName Padberg
232 schema:givenName Inken
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744347675.80
234 rdf:type schema:Person
235 sg:pub.10.1007/bf00277486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001170583
236 https://doi.org/10.1007/bf00277486
237 rdf:type schema:CreativeWork
238 sg:pub.10.1007/bf00429772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035963470
239 https://doi.org/10.1007/bf00429772
240 rdf:type schema:CreativeWork
241 sg:pub.10.1007/bf01221856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030385169
242 https://doi.org/10.1007/bf01221856
243 rdf:type schema:CreativeWork
244 sg:pub.10.1007/s00125-002-0873-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1007237668
245 https://doi.org/10.1007/s00125-002-0873-y
246 rdf:type schema:CreativeWork
247 sg:pub.10.1007/s00535-013-0758-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005345690
248 https://doi.org/10.1007/s00535-013-0758-5
249 rdf:type schema:CreativeWork
250 https://app.dimensions.ai/details/publication/pub.1075306957 schema:CreativeWork
251 https://app.dimensions.ai/details/publication/pub.1075957371 schema:CreativeWork
252 https://doi.org/10.1016/j.cmet.2007.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007688311
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1016/j.cmet.2009.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013089119
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1016/j.cmet.2014.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022845931
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1016/s2213-8587(13)70143-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018807494
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1038/msb.2012.43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017445284
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1042/bj0290640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017367945
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1053/meta.2003.50048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045756898
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1056/nejm196910092811503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003075468
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1073/pnas.0912059107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036909726
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1083/jcb.149.3.707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039031125
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1111/j.0954-6820.1969.tb07347.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003437020
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1152/ajpendo.00134.2007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005410517
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1155/2014/685204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021197007
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1172/jci118951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012084014
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1172/jci2961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004215907
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1172/jci65726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035622739
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1194/jlr.m600177-jlr200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033726607
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1371/journal.pone.0006808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003104904
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1371/journal.pone.0085082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030198825
289 rdf:type schema:CreativeWork
290 https://doi.org/10.2215/cjn.02870707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001815996
291 rdf:type schema:CreativeWork
292 https://doi.org/10.2337/db05-0742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033408976
293 rdf:type schema:CreativeWork
294 https://doi.org/10.2337/db13-0570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016050719
295 rdf:type schema:CreativeWork
296 https://doi.org/10.2337/dc09-2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012255058
297 rdf:type schema:CreativeWork
298 https://doi.org/10.3945/jn.114.199190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011889776
299 rdf:type schema:CreativeWork
300 https://www.grid.ac/institutes/grid.6936.a schema:alternateName Technical University Munich
301 schema:name Department of Nutritional Physiology, Technische Universität München, Gregor-Mendel-Str. 2, 85350, Freising, Germany
302 ZIEL – Institute for Food & Health, 85350, Freising, Germany
303 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...