Metabolite profiling in plasma and tissues of ob/ob and db/db mice identifies novel markers of obesity and type 2 diabetes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-09

AUTHORS

Pieter Giesbertz, Inken Padberg, Dietrich Rein, Josef Ecker, Anja S. Höfle, Britta Spanier, Hannelore Daniel

ABSTRACT

AIMS/HYPOTHESIS: Metabolomics approaches in humans have identified around 40 plasma metabolites associated with insulin resistance (IR) and type 2 diabetes, which often coincide with those for obesity. We aimed to separate diabetes-associated from obesity-associated metabolite alterations in plasma and study the impact of metabolically important tissues on plasma metabolite concentrations. METHODS: Two obese mouse models were studied; one exclusively with obesity (ob/ob) and another with type 2 diabetes (db/db). Both models have impaired leptin signalling as a cause for obesity, but the different genetic backgrounds determine the susceptibility to diabetes. In these mice, we profiled plasma, liver, skeletal muscle and adipose tissue via semi-quantitative GC-MS and quantitative liquid chromatography (LC)-MS/MS for a wide range of metabolites. RESULTS: Metabolite profiling identified 24 metabolites specifically associated with diabetes but not with obesity. Among these are known markers such as 1,5-anhydro-D-sorbitol, 3-hydroxybutyrate and the recently reported marker glyoxylate. New metabolites in the diabetic model were lysine, O-phosphotyrosine and branched-chain fatty acids. We also identified 33 metabolites that were similarly altered in both models, represented by branched-chain amino acids (BCAA) as well as glycine, serine, trans-4-hydroxyproline, and various lipid species and derivatives. Correlation analyses showed stronger associations for plasma amino acids with adipose tissue metabolites in db/db mice compared with ob/ob mice, suggesting a prominent contribution of adipose tissue to changes in plasma in a diabetic state. CONCLUSIONS/INTERPRETATION: By studying mice with metabolite signatures that resemble obesity and diabetes in humans, we have found new metabolite entities for validation in appropriate human cohorts and revealed their possible tissue of origin. More... »

PAGES

2133-2143

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00125-015-3656-y

DOI

http://dx.doi.org/10.1007/s00125-015-3656-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053312131

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26058503


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "3-Hydroxybutyric Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adipose Tissue", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diabetes Mellitus, Type 2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fatty Acids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gas Chromatography-Mass Spectrometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glyoxylates", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Insulin Resistance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Leptin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lysine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice, Inbred C57BL", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice, Obese", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscle, Skeletal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Obesity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phosphotyrosine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Transduction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sorbitol", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Department of Nutritional Physiology, Technische Universit\u00e4t M\u00fcnchen, Gregor-Mendel-Str. 2, 85350, Freising, Germany", 
            "ZIEL \u2013 Institute for Food & Health, 85350, Freising, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giesbertz", 
        "givenName": "Pieter", 
        "id": "sg:person.01133055337.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133055337.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Metanomics Health GmbH and metanomics GmbH, Biomarker Program, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Padberg", 
        "givenName": "Inken", 
        "id": "sg:person.0744347675.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744347675.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Metanomics Health GmbH and metanomics GmbH, Biomarker Program, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rein", 
        "givenName": "Dietrich", 
        "id": "sg:person.01047654460.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047654460.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Department of Nutritional Physiology, Technische Universit\u00e4t M\u00fcnchen, Gregor-Mendel-Str. 2, 85350, Freising, Germany", 
            "ZIEL \u2013 Institute for Food & Health, 85350, Freising, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ecker", 
        "givenName": "Josef", 
        "id": "sg:person.01351101267.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351101267.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Department of Nutritional Physiology, Technische Universit\u00e4t M\u00fcnchen, Gregor-Mendel-Str. 2, 85350, Freising, Germany", 
            "ZIEL \u2013 Institute for Food & Health, 85350, Freising, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00f6fle", 
        "givenName": "Anja S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Department of Nutritional Physiology, Technische Universit\u00e4t M\u00fcnchen, Gregor-Mendel-Str. 2, 85350, Freising, Germany", 
            "ZIEL \u2013 Institute for Food & Health, 85350, Freising, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spanier", 
        "givenName": "Britta", 
        "id": "sg:person.01233502107.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233502107.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Department of Nutritional Physiology, Technische Universit\u00e4t M\u00fcnchen, Gregor-Mendel-Str. 2, 85350, Freising, Germany", 
            "ZIEL \u2013 Institute for Food & Health, 85350, Freising, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Daniel", 
        "givenName": "Hannelore", 
        "id": "sg:person.0611232337.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611232337.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00277486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001170583", 
          "https://doi.org/10.1007/bf00277486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00277486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001170583", 
          "https://doi.org/10.1007/bf00277486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00277486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001170583", 
          "https://doi.org/10.1007/bf00277486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2215/cjn.02870707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001815996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm196910092811503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003075468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0006808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003104904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0954-6820.1969.tb07347.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003437020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0954-6820.1969.tb07347.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003437020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci2961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004215907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00535-013-0758-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005345690", 
          "https://doi.org/10.1007/s00535-013-0758-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpendo.00134.2007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005410517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-002-0873-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007237668", 
          "https://doi.org/10.1007/s00125-002-0873-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-002-0873-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007237668", 
          "https://doi.org/10.1007/s00125-002-0873-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmet.2007.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007688311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3945/jn.114.199190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011889776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci118951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012084014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc09-2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012255058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmet.2009.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013089119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/db13-0570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016050719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj0290640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017367945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj0290640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017367945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2012.43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017445284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2012.43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017445284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s2213-8587(13)70143-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018807494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/685204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021197007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmet.2014.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022845931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmet.2014.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022845931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0085082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030198825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01221856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030385169", 
          "https://doi.org/10.1007/bf01221856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01221856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030385169", 
          "https://doi.org/10.1007/bf01221856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01221856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030385169", 
          "https://doi.org/10.1007/bf01221856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/db05-0742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033408976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1194/jlr.m600177-jlr200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033726607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci65726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035622739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00429772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035963470", 
          "https://doi.org/10.1007/bf00429772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00429772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035963470", 
          "https://doi.org/10.1007/bf00429772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0912059107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036909726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1083/jcb.149.3.707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039031125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/meta.2003.50048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045756898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/meta.2003.50048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045756898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075306957", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075957371", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-09", 
    "datePublishedReg": "2015-09-01", 
    "description": "AIMS/HYPOTHESIS: Metabolomics approaches in humans have identified around 40 plasma metabolites associated with insulin resistance (IR) and type 2 diabetes, which often coincide with those for obesity. We aimed to separate diabetes-associated from obesity-associated metabolite alterations in plasma and study the impact of metabolically important tissues on plasma metabolite concentrations.\nMETHODS: Two obese mouse models were studied; one exclusively with obesity (ob/ob) and another with type 2 diabetes (db/db). Both models have impaired leptin signalling as a cause for obesity, but the different genetic backgrounds determine the susceptibility to diabetes. In these mice, we profiled plasma, liver, skeletal muscle and adipose tissue via semi-quantitative GC-MS and quantitative liquid chromatography (LC)-MS/MS for a wide range of metabolites.\nRESULTS: Metabolite profiling identified 24 metabolites specifically associated with diabetes but not with obesity. Among these are known markers such as 1,5-anhydro-D-sorbitol, 3-hydroxybutyrate and the recently reported marker glyoxylate. New metabolites in the diabetic model were lysine, O-phosphotyrosine and branched-chain fatty acids. We also identified 33 metabolites that were similarly altered in both models, represented by branched-chain amino acids (BCAA) as well as glycine, serine, trans-4-hydroxyproline, and various lipid species and derivatives. Correlation analyses showed stronger associations for plasma amino acids with adipose tissue metabolites in db/db mice compared with ob/ob mice, suggesting a prominent contribution of adipose tissue to changes in plasma in a diabetic state.\nCONCLUSIONS/INTERPRETATION: By studying mice with metabolite signatures that resemble obesity and diabetes in humans, we have found new metabolite entities for validation in appropriate human cohorts and revealed their possible tissue of origin.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00125-015-3656-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1001482", 
        "issn": [
          "0012-186X", 
          "1432-0428"
        ], 
        "name": "Diabetologia", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "name": "Metabolite profiling in plasma and tissues of ob/ob and db/db mice identifies novel markers of obesity and type 2 diabetes", 
    "pagination": "2133-2143", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fdefc24a29ee7c2a0e40987741dabe13f42b02ac51d7344b501b95b7dd0e00ff"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26058503"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0006777"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00125-015-3656-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053312131"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00125-015-3656-y", 
      "https://app.dimensions.ai/details/publication/pub.1053312131"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113640_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00125-015-3656-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00125-015-3656-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00125-015-3656-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00125-015-3656-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00125-015-3656-y'


 

This table displays all metadata directly associated to this object as RDF triples.

303 TRIPLES      21 PREDICATES      83 URIs      44 LITERALS      32 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00125-015-3656-y schema:about N06f44593a73441d8aa82b992560d0922
2 N11afbc838ebe45d9a1010818fb0f6992
3 N162a3c43a946432ea397848a81d0c742
4 N3d0d4d47118c4a2e8dcf68d7ef205a46
5 N4f92106e3cc940bc86746ed12dae7e2f
6 N56a38f10d6574fb09a1bbf6176e7d951
7 N60610f19507144ab81225e059e2f4854
8 N61bf3965ff244b869ad9707db98320f2
9 N622dbe97d0f0438aa00f3a1cabae098f
10 N63f0f5d7e51f46fcb234e43a15a49540
11 N7256a806bca24f09aedd80ea3ffed123
12 N72ba8808112d4e0cae547f3705f28d3d
13 N85d0c204ffb0473891c7b59d0521ea63
14 N868dac602506408bb913c17ad0796b05
15 Nb19cb8affe9747b495ad1eb352af44db
16 Nb5928ab26a1a46488be5b73877163042
17 Nb8ca5801d9034b10a9880096f9491557
18 Nbe1dbffcde4d4c0382d9d0a15beb2e26
19 Nc7b779626c3045e29f1c1098f1320c65
20 Ne60ea44805534e93840885d180105392
21 Ne75a8d958978496e865ce380e1756e89
22 Ne774161ff14a4ab0ae82d512ef5c2593
23 Ne91d242a14b648de93364559db1fa3a0
24 anzsrc-for:11
25 anzsrc-for:1103
26 schema:author N14aef66803334dcfa8a1d18505999fe3
27 schema:citation sg:pub.10.1007/bf00277486
28 sg:pub.10.1007/bf00429772
29 sg:pub.10.1007/bf01221856
30 sg:pub.10.1007/s00125-002-0873-y
31 sg:pub.10.1007/s00535-013-0758-5
32 https://app.dimensions.ai/details/publication/pub.1075306957
33 https://app.dimensions.ai/details/publication/pub.1075957371
34 https://doi.org/10.1016/j.cmet.2007.12.009
35 https://doi.org/10.1016/j.cmet.2009.02.002
36 https://doi.org/10.1016/j.cmet.2014.09.003
37 https://doi.org/10.1016/s2213-8587(13)70143-8
38 https://doi.org/10.1038/msb.2012.43
39 https://doi.org/10.1042/bj0290640
40 https://doi.org/10.1053/meta.2003.50048
41 https://doi.org/10.1056/nejm196910092811503
42 https://doi.org/10.1073/pnas.0912059107
43 https://doi.org/10.1083/jcb.149.3.707
44 https://doi.org/10.1111/j.0954-6820.1969.tb07347.x
45 https://doi.org/10.1152/ajpendo.00134.2007
46 https://doi.org/10.1155/2014/685204
47 https://doi.org/10.1172/jci118951
48 https://doi.org/10.1172/jci2961
49 https://doi.org/10.1172/jci65726
50 https://doi.org/10.1194/jlr.m600177-jlr200
51 https://doi.org/10.1371/journal.pone.0006808
52 https://doi.org/10.1371/journal.pone.0085082
53 https://doi.org/10.2215/cjn.02870707
54 https://doi.org/10.2337/db05-0742
55 https://doi.org/10.2337/db13-0570
56 https://doi.org/10.2337/dc09-2013
57 https://doi.org/10.3945/jn.114.199190
58 schema:datePublished 2015-09
59 schema:datePublishedReg 2015-09-01
60 schema:description AIMS/HYPOTHESIS: Metabolomics approaches in humans have identified around 40 plasma metabolites associated with insulin resistance (IR) and type 2 diabetes, which often coincide with those for obesity. We aimed to separate diabetes-associated from obesity-associated metabolite alterations in plasma and study the impact of metabolically important tissues on plasma metabolite concentrations. METHODS: Two obese mouse models were studied; one exclusively with obesity (ob/ob) and another with type 2 diabetes (db/db). Both models have impaired leptin signalling as a cause for obesity, but the different genetic backgrounds determine the susceptibility to diabetes. In these mice, we profiled plasma, liver, skeletal muscle and adipose tissue via semi-quantitative GC-MS and quantitative liquid chromatography (LC)-MS/MS for a wide range of metabolites. RESULTS: Metabolite profiling identified 24 metabolites specifically associated with diabetes but not with obesity. Among these are known markers such as 1,5-anhydro-D-sorbitol, 3-hydroxybutyrate and the recently reported marker glyoxylate. New metabolites in the diabetic model were lysine, O-phosphotyrosine and branched-chain fatty acids. We also identified 33 metabolites that were similarly altered in both models, represented by branched-chain amino acids (BCAA) as well as glycine, serine, trans-4-hydroxyproline, and various lipid species and derivatives. Correlation analyses showed stronger associations for plasma amino acids with adipose tissue metabolites in db/db mice compared with ob/ob mice, suggesting a prominent contribution of adipose tissue to changes in plasma in a diabetic state. CONCLUSIONS/INTERPRETATION: By studying mice with metabolite signatures that resemble obesity and diabetes in humans, we have found new metabolite entities for validation in appropriate human cohorts and revealed their possible tissue of origin.
61 schema:genre research_article
62 schema:inLanguage en
63 schema:isAccessibleForFree true
64 schema:isPartOf N39a6b54f5a7a4e78a2adf06263743c1c
65 N8d9a6e309c6e4675ade37e7fea318c12
66 sg:journal.1001482
67 schema:name Metabolite profiling in plasma and tissues of ob/ob and db/db mice identifies novel markers of obesity and type 2 diabetes
68 schema:pagination 2133-2143
69 schema:productId N368408cd3ea842448c27f709e45ff127
70 Nacf08ed382374084bd0b08a8af9e3033
71 Ne8ffc2375cb545cfab321da3b30abc12
72 Nf862e0ab5faf4f639f999c03fe632a6e
73 Nffbaedc6243c4f79990f9884eb0b44a4
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053312131
75 https://doi.org/10.1007/s00125-015-3656-y
76 schema:sdDatePublished 2019-04-11T10:28
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N341a73c727564e7e92d9d0161f648d4a
79 schema:url https://link.springer.com/10.1007%2Fs00125-015-3656-y
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N06f44593a73441d8aa82b992560d0922 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Adipose Tissue
85 rdf:type schema:DefinedTerm
86 N11afbc838ebe45d9a1010818fb0f6992 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Liver
88 rdf:type schema:DefinedTerm
89 N14aef66803334dcfa8a1d18505999fe3 rdf:first sg:person.01133055337.63
90 rdf:rest N8456b4195b944dcc86433d339615f120
91 N162a3c43a946432ea397848a81d0c742 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Muscle, Skeletal
93 rdf:type schema:DefinedTerm
94 N1c30566286bc45469869e817bfe982d7 rdf:first sg:person.01233502107.10
95 rdf:rest N23a6687aac9d458f888d771f45f1bf95
96 N23a6687aac9d458f888d771f45f1bf95 rdf:first sg:person.0611232337.59
97 rdf:rest rdf:nil
98 N324a13d8a2434a8083876b12a68859ec schema:affiliation https://www.grid.ac/institutes/grid.6936.a
99 schema:familyName Höfle
100 schema:givenName Anja S.
101 rdf:type schema:Person
102 N341a73c727564e7e92d9d0161f648d4a schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 N368408cd3ea842448c27f709e45ff127 schema:name pubmed_id
105 schema:value 26058503
106 rdf:type schema:PropertyValue
107 N39a6b54f5a7a4e78a2adf06263743c1c schema:volumeNumber 58
108 rdf:type schema:PublicationVolume
109 N3d0d4d47118c4a2e8dcf68d7ef205a46 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name 3-Hydroxybutyric Acid
111 rdf:type schema:DefinedTerm
112 N4f92106e3cc940bc86746ed12dae7e2f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Animals
114 rdf:type schema:DefinedTerm
115 N54ec7165ceee47ce866cabe539eb1e40 rdf:first N324a13d8a2434a8083876b12a68859ec
116 rdf:rest N1c30566286bc45469869e817bfe982d7
117 N56a38f10d6574fb09a1bbf6176e7d951 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Gene Expression Regulation
119 rdf:type schema:DefinedTerm
120 N60610f19507144ab81225e059e2f4854 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Metabolomics
122 rdf:type schema:DefinedTerm
123 N61bf3965ff244b869ad9707db98320f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Insulin Resistance
125 rdf:type schema:DefinedTerm
126 N622dbe97d0f0438aa00f3a1cabae098f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Obesity
128 rdf:type schema:DefinedTerm
129 N63c2e8931a314345afde547ee552114b schema:name Metanomics Health GmbH and metanomics GmbH, Biomarker Program, Berlin, Germany
130 rdf:type schema:Organization
131 N63f0f5d7e51f46fcb234e43a15a49540 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Signal Transduction
133 rdf:type schema:DefinedTerm
134 N66a4c6ff88b84322999daed98b5ee12b schema:name Metanomics Health GmbH and metanomics GmbH, Biomarker Program, Berlin, Germany
135 rdf:type schema:Organization
136 N7256a806bca24f09aedd80ea3ffed123 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Lysine
138 rdf:type schema:DefinedTerm
139 N72ba8808112d4e0cae547f3705f28d3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Leptin
141 rdf:type schema:DefinedTerm
142 N8456b4195b944dcc86433d339615f120 rdf:first sg:person.0744347675.80
143 rdf:rest Nf6ccbc74b6a1411c87ad581d9207b9d6
144 N85d0c204ffb0473891c7b59d0521ea63 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Metabolome
146 rdf:type schema:DefinedTerm
147 N868dac602506408bb913c17ad0796b05 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Male
149 rdf:type schema:DefinedTerm
150 N8d9a6e309c6e4675ade37e7fea318c12 schema:issueNumber 9
151 rdf:type schema:PublicationIssue
152 N9aef4521070c437d91f748a748b375e0 rdf:first sg:person.01351101267.06
153 rdf:rest N54ec7165ceee47ce866cabe539eb1e40
154 Nacf08ed382374084bd0b08a8af9e3033 schema:name nlm_unique_id
155 schema:value 0006777
156 rdf:type schema:PropertyValue
157 Nb19cb8affe9747b495ad1eb352af44db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Glyoxylates
159 rdf:type schema:DefinedTerm
160 Nb5928ab26a1a46488be5b73877163042 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Mice, Obese
162 rdf:type schema:DefinedTerm
163 Nb8ca5801d9034b10a9880096f9491557 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Mice, Inbred C57BL
165 rdf:type schema:DefinedTerm
166 Nbe1dbffcde4d4c0382d9d0a15beb2e26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Mice
168 rdf:type schema:DefinedTerm
169 Nc7b779626c3045e29f1c1098f1320c65 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Sorbitol
171 rdf:type schema:DefinedTerm
172 Ne60ea44805534e93840885d180105392 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Fatty Acids
174 rdf:type schema:DefinedTerm
175 Ne75a8d958978496e865ce380e1756e89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Diabetes Mellitus, Type 2
177 rdf:type schema:DefinedTerm
178 Ne774161ff14a4ab0ae82d512ef5c2593 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Phosphotyrosine
180 rdf:type schema:DefinedTerm
181 Ne8ffc2375cb545cfab321da3b30abc12 schema:name dimensions_id
182 schema:value pub.1053312131
183 rdf:type schema:PropertyValue
184 Ne91d242a14b648de93364559db1fa3a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Gas Chromatography-Mass Spectrometry
186 rdf:type schema:DefinedTerm
187 Nf6ccbc74b6a1411c87ad581d9207b9d6 rdf:first sg:person.01047654460.25
188 rdf:rest N9aef4521070c437d91f748a748b375e0
189 Nf862e0ab5faf4f639f999c03fe632a6e schema:name readcube_id
190 schema:value fdefc24a29ee7c2a0e40987741dabe13f42b02ac51d7344b501b95b7dd0e00ff
191 rdf:type schema:PropertyValue
192 Nffbaedc6243c4f79990f9884eb0b44a4 schema:name doi
193 schema:value 10.1007/s00125-015-3656-y
194 rdf:type schema:PropertyValue
195 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
196 schema:name Medical and Health Sciences
197 rdf:type schema:DefinedTerm
198 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
199 schema:name Clinical Sciences
200 rdf:type schema:DefinedTerm
201 sg:journal.1001482 schema:issn 0012-186X
202 1432-0428
203 schema:name Diabetologia
204 rdf:type schema:Periodical
205 sg:person.01047654460.25 schema:affiliation N63c2e8931a314345afde547ee552114b
206 schema:familyName Rein
207 schema:givenName Dietrich
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047654460.25
209 rdf:type schema:Person
210 sg:person.01133055337.63 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
211 schema:familyName Giesbertz
212 schema:givenName Pieter
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133055337.63
214 rdf:type schema:Person
215 sg:person.01233502107.10 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
216 schema:familyName Spanier
217 schema:givenName Britta
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233502107.10
219 rdf:type schema:Person
220 sg:person.01351101267.06 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
221 schema:familyName Ecker
222 schema:givenName Josef
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351101267.06
224 rdf:type schema:Person
225 sg:person.0611232337.59 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
226 schema:familyName Daniel
227 schema:givenName Hannelore
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611232337.59
229 rdf:type schema:Person
230 sg:person.0744347675.80 schema:affiliation N66a4c6ff88b84322999daed98b5ee12b
231 schema:familyName Padberg
232 schema:givenName Inken
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744347675.80
234 rdf:type schema:Person
235 sg:pub.10.1007/bf00277486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001170583
236 https://doi.org/10.1007/bf00277486
237 rdf:type schema:CreativeWork
238 sg:pub.10.1007/bf00429772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035963470
239 https://doi.org/10.1007/bf00429772
240 rdf:type schema:CreativeWork
241 sg:pub.10.1007/bf01221856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030385169
242 https://doi.org/10.1007/bf01221856
243 rdf:type schema:CreativeWork
244 sg:pub.10.1007/s00125-002-0873-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1007237668
245 https://doi.org/10.1007/s00125-002-0873-y
246 rdf:type schema:CreativeWork
247 sg:pub.10.1007/s00535-013-0758-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005345690
248 https://doi.org/10.1007/s00535-013-0758-5
249 rdf:type schema:CreativeWork
250 https://app.dimensions.ai/details/publication/pub.1075306957 schema:CreativeWork
251 https://app.dimensions.ai/details/publication/pub.1075957371 schema:CreativeWork
252 https://doi.org/10.1016/j.cmet.2007.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007688311
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1016/j.cmet.2009.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013089119
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1016/j.cmet.2014.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022845931
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1016/s2213-8587(13)70143-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018807494
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1038/msb.2012.43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017445284
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1042/bj0290640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017367945
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1053/meta.2003.50048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045756898
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1056/nejm196910092811503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003075468
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1073/pnas.0912059107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036909726
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1083/jcb.149.3.707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039031125
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1111/j.0954-6820.1969.tb07347.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003437020
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1152/ajpendo.00134.2007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005410517
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1155/2014/685204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021197007
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1172/jci118951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012084014
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1172/jci2961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004215907
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1172/jci65726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035622739
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1194/jlr.m600177-jlr200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033726607
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1371/journal.pone.0006808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003104904
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1371/journal.pone.0085082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030198825
289 rdf:type schema:CreativeWork
290 https://doi.org/10.2215/cjn.02870707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001815996
291 rdf:type schema:CreativeWork
292 https://doi.org/10.2337/db05-0742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033408976
293 rdf:type schema:CreativeWork
294 https://doi.org/10.2337/db13-0570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016050719
295 rdf:type schema:CreativeWork
296 https://doi.org/10.2337/dc09-2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012255058
297 rdf:type schema:CreativeWork
298 https://doi.org/10.3945/jn.114.199190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011889776
299 rdf:type schema:CreativeWork
300 https://www.grid.ac/institutes/grid.6936.a schema:alternateName Technical University Munich
301 schema:name Department of Nutritional Physiology, Technische Universität München, Gregor-Mendel-Str. 2, 85350, Freising, Germany
302 ZIEL – Institute for Food & Health, 85350, Freising, Germany
303 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...