Dietary acid load and risk of type 2 diabetes: the E3N-EPIC cohort study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-02

AUTHORS

Guy Fagherazzi, Alice Vilier, Fabrice Bonnet, Martin Lajous, Beverley Balkau, Marie-Christine Boutron-Ruault, Françoise Clavel-Chapelon

ABSTRACT

AIMS/HYPOTHESIS: The objective of this study was to evaluate the prospective relationship between dietary acid load, assessed with both the potential renal acid load (PRAL) and the net endogenous acid production (NEAP) scores, and type 2 diabetes risk. METHODS: A total of 66,485 women from the E3N-EPIC cohort were followed for incident diabetes over 14 years. PRAL and NEAP scores were derived from nutrient intakes. HRs for type 2 diabetes risk across quartiles of the baseline PRAL and NEAP scores were estimated with multivariate Cox regression models. RESULTS: During follow-up, 1,372 cases of incident type 2 diabetes were validated. In the overall population, the highest PRAL quartile, reflecting a greater acid-forming potential, was associated with a significant increase in type 2 diabetes risk, compared with the first quartile (HR 1.56, 95% CI 1.29, 1.90). The association was stronger among women with BMI <25 kg/m2 (HR 1.96, 95% CI 1.43, 2.69) than in overweight women (HR 1.28, 95% CI 1.00, 1.64); statistically significant trends in risk across quartiles were observed in both groups (p trend < 0.0001 and p trend = 0.03, respectively). The NEAP score provided similar findings. CONCLUSIONS/INTERPRETATION: We have demonstrated for the first time in a large prospective study that dietary acid load was positively associated with type 2 diabetes risk, independently of other known risk factors for diabetes. Our results need to be validated in other populations, and may lead to promotion of diets with a low acid load for the prevention of diabetes. Further research is required on the underlying mechanisms. More... »

PAGES

313-320

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00125-013-3100-0

DOI

http://dx.doi.org/10.1007/s00125-013-3100-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034360032

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24232975


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Acidosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blood Glucose", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diabetes Mellitus, Type 2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diet", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diet Surveys", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dietary Fats", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dietary Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Energy Intake", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Follow-Up Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Health Promotion", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Incidence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proportional Hazards Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surveys and Questionnaires", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut Gustave Roussy", 
          "id": "https://www.grid.ac/institutes/grid.14925.3b", 
          "name": [
            "Center for Research in Epidemiology and Population Health (CESP), Inserm U1018, Team 9, Nutrition, Hormones and Women\u2019s Health, Gustave Roussy Institute, 114 rue Edouard Vaillant, 94805, Villejuif Cedex, France", 
            "Paris-South University, Villejuif, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fagherazzi", 
        "givenName": "Guy", 
        "id": "sg:person.01151713307.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151713307.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Gustave Roussy", 
          "id": "https://www.grid.ac/institutes/grid.14925.3b", 
          "name": [
            "Center for Research in Epidemiology and Population Health (CESP), Inserm U1018, Team 9, Nutrition, Hormones and Women\u2019s Health, Gustave Roussy Institute, 114 rue Edouard Vaillant, 94805, Villejuif Cedex, France", 
            "Paris-South University, Villejuif, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vilier", 
        "givenName": "Alice", 
        "id": "sg:person.0603244103.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603244103.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre Hospitalier Universitaire de Rennes", 
          "id": "https://www.grid.ac/institutes/grid.411154.4", 
          "name": [
            "CHU, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bonnet", 
        "givenName": "Fabrice", 
        "id": "sg:person.01055134515.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055134515.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto Nacional de Salud P\u00fablica", 
          "id": "https://www.grid.ac/institutes/grid.415771.1", 
          "name": [
            "Center for Research on Population Health, National Institute of Public Health of Mexico, Cuernavaca, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lajous", 
        "givenName": "Martin", 
        "id": "sg:person.01027327123.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027327123.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Gustave Roussy", 
          "id": "https://www.grid.ac/institutes/grid.14925.3b", 
          "name": [
            "Center for Research in Epidemiology and Population Health (CESP), Inserm U1018, Team 9, Nutrition, Hormones and Women\u2019s Health, Gustave Roussy Institute, 114 rue Edouard Vaillant, 94805, Villejuif Cedex, France", 
            "Paris-South University, Villejuif, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balkau", 
        "givenName": "Beverley", 
        "id": "sg:person.010075340637.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010075340637.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Gustave Roussy", 
          "id": "https://www.grid.ac/institutes/grid.14925.3b", 
          "name": [
            "Center for Research in Epidemiology and Population Health (CESP), Inserm U1018, Team 9, Nutrition, Hormones and Women\u2019s Health, Gustave Roussy Institute, 114 rue Edouard Vaillant, 94805, Villejuif Cedex, France", 
            "Paris-South University, Villejuif, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boutron-Ruault", 
        "givenName": "Marie-Christine", 
        "id": "sg:person.011104534765.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011104534765.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Gustave Roussy", 
          "id": "https://www.grid.ac/institutes/grid.14925.3b", 
          "name": [
            "Center for Research in Epidemiology and Population Health (CESP), Inserm U1018, Team 9, Nutrition, Hormones and Women\u2019s Health, Gustave Roussy Institute, 114 rue Edouard Vaillant, 94805, Villejuif Cedex, France", 
            "Paris-South University, Villejuif, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Clavel-Chapelon", 
        "givenName": "Fran\u00e7oise", 
        "id": "sg:person.01317056332.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317056332.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/ije/26.suppl_1.s128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001227032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ije/dyq126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002679828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1464-5491.2008.02471.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004851986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/ajkd.2002.34504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005349622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-8223(95)00219-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005850554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-8223(95)00219-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005850554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3945/ajcn.111.022343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006719213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2215/cjn.00670207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007141992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwp257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010826822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwp257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010826822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1046/j.1523-1755.2002.00508.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024716209", 
          "https://doi.org/10.1046/j.1523-1755.2002.00508.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hypertensionaha.109.135582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029794635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hypertensionaha.109.135582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029794635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0026-0495(82)90094-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034436508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1503/cmaj.120438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042907635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1503/cmaj.120438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042907635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1681/asn.2005121246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043516633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1681/asn.2005121246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043516633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clnu.2011.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051387622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/met.2010.0108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059298698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5301/jn.2010.5711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072750182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn/76.6.1308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075195890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn/77.5.1255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075276234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077247721", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpendo.1978.234.4.e426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079774350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpendo.1979.236.4.e328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1080286821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn/21.5.451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1081242441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn/59.6.1356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082697879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajcn/68.3.576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083315482"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-02", 
    "datePublishedReg": "2014-02-01", 
    "description": "AIMS/HYPOTHESIS: The objective of this study was to evaluate the prospective relationship between dietary acid load, assessed with both the potential renal acid load (PRAL) and the net endogenous acid production (NEAP) scores, and type 2 diabetes risk.\nMETHODS: A total of 66,485 women from the E3N-EPIC cohort were followed for incident diabetes over 14 years. PRAL and NEAP scores were derived from nutrient intakes. HRs for type 2 diabetes risk across quartiles of the baseline PRAL and NEAP scores were estimated with multivariate Cox regression models.\nRESULTS: During follow-up, 1,372 cases of incident type 2 diabetes were validated. In the overall population, the highest PRAL quartile, reflecting a greater acid-forming potential, was associated with a significant increase in type 2 diabetes risk, compared with the first quartile (HR 1.56, 95% CI 1.29, 1.90). The association was stronger among women with BMI <25 kg/m2 (HR 1.96, 95% CI 1.43, 2.69) than in overweight women (HR 1.28, 95% CI 1.00, 1.64); statistically significant trends in risk across quartiles were observed in both groups (p trend\u2009<\u20090.0001 and p trend\u2009=\u20090.03, respectively). The NEAP score provided similar findings.\nCONCLUSIONS/INTERPRETATION: We have demonstrated for the first time in a large prospective study that dietary acid load was positively associated with type 2 diabetes risk, independently of other known risk factors for diabetes. Our results need to be validated in other populations, and may lead to promotion of diets with a low acid load for the prevention of diabetes. Further research is required on the underlying mechanisms.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00125-013-3100-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1001482", 
        "issn": [
          "0012-186X", 
          "1432-0428"
        ], 
        "name": "Diabetologia", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "57"
      }
    ], 
    "name": "Dietary acid load and risk of type 2 diabetes: the E3N-EPIC cohort study", 
    "pagination": "313-320", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a3ad5479c66432cdc89cf1640dce87173bd62f363fac64533f1f59aa8b1c9d87"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24232975"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0006777"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00125-013-3100-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034360032"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00125-013-3100-0", 
      "https://app.dimensions.ai/details/publication/pub.1034360032"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54322_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00125-013-3100-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00125-013-3100-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00125-013-3100-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00125-013-3100-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00125-013-3100-0'


 

This table displays all metadata directly associated to this object as RDF triples.

266 TRIPLES      21 PREDICATES      72 URIs      40 LITERALS      28 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00125-013-3100-0 schema:about N03b13a85718849d498957ca0f0f80f56
2 N28f560cb5ed6432db594371ce292a914
3 N2d99d813a039484b88b9c9f2f763c6c9
4 N72b960bd38e04511b066f250cb97bd73
5 N7770955d8b7d472cb623fc4b13191b42
6 N9ac5dd29de5044f48fc509a0fd64e8d5
7 N9d7b7a4646734a79af0ed9e7ae22db83
8 Na1533613f47943c4b2dad5368313932d
9 Na8521920202b4100b772dfb5d334ffac
10 Nab678aad006148b0b8e930d6e8f0db6c
11 Nacb8e84838b34eb2b6f3a5723497ec9f
12 Nb3747a4b87624b35890afeae62660261
13 Nbb4267e7ad0b4f729f8b90e4d00c7ee3
14 Nbe8021fbefa14bcebf9b8a1b32339b20
15 Nc32f36dfdd4c40edb0d1e8649fe2367c
16 Nd985eadfe3514dffac2ae46d9fff0443
17 Ndbfb5c9327704fe7a77583c4d9038dd7
18 Ndf8be144c3094976806679487b92a86c
19 Neecd3d35610f4a9fb684ec962b843ec7
20 anzsrc-for:11
21 anzsrc-for:1103
22 schema:author N4cf090c776944dfd9de55b9aa0c7873e
23 schema:citation sg:pub.10.1046/j.1523-1755.2002.00508.x
24 https://app.dimensions.ai/details/publication/pub.1077247721
25 https://doi.org/10.1016/0026-0495(82)90094-4
26 https://doi.org/10.1016/j.clnu.2011.03.008
27 https://doi.org/10.1016/s0002-8223(95)00219-7
28 https://doi.org/10.1053/ajkd.2002.34504
29 https://doi.org/10.1089/met.2010.0108
30 https://doi.org/10.1093/ajcn/21.5.451
31 https://doi.org/10.1093/ajcn/59.6.1356
32 https://doi.org/10.1093/ajcn/68.3.576
33 https://doi.org/10.1093/ajcn/76.6.1308
34 https://doi.org/10.1093/ajcn/77.5.1255
35 https://doi.org/10.1093/aje/kwp257
36 https://doi.org/10.1093/ije/26.suppl_1.s128
37 https://doi.org/10.1093/ije/dyq126
38 https://doi.org/10.1111/j.1464-5491.2008.02471.x
39 https://doi.org/10.1152/ajpendo.1978.234.4.e426
40 https://doi.org/10.1152/ajpendo.1979.236.4.e328
41 https://doi.org/10.1161/hypertensionaha.109.135582
42 https://doi.org/10.1503/cmaj.120438
43 https://doi.org/10.1681/asn.2005121246
44 https://doi.org/10.2215/cjn.00670207
45 https://doi.org/10.3945/ajcn.111.022343
46 https://doi.org/10.5301/jn.2010.5711
47 schema:datePublished 2014-02
48 schema:datePublishedReg 2014-02-01
49 schema:description AIMS/HYPOTHESIS: The objective of this study was to evaluate the prospective relationship between dietary acid load, assessed with both the potential renal acid load (PRAL) and the net endogenous acid production (NEAP) scores, and type 2 diabetes risk. METHODS: A total of 66,485 women from the E3N-EPIC cohort were followed for incident diabetes over 14 years. PRAL and NEAP scores were derived from nutrient intakes. HRs for type 2 diabetes risk across quartiles of the baseline PRAL and NEAP scores were estimated with multivariate Cox regression models. RESULTS: During follow-up, 1,372 cases of incident type 2 diabetes were validated. In the overall population, the highest PRAL quartile, reflecting a greater acid-forming potential, was associated with a significant increase in type 2 diabetes risk, compared with the first quartile (HR 1.56, 95% CI 1.29, 1.90). The association was stronger among women with BMI <25 kg/m2 (HR 1.96, 95% CI 1.43, 2.69) than in overweight women (HR 1.28, 95% CI 1.00, 1.64); statistically significant trends in risk across quartiles were observed in both groups (p trend < 0.0001 and p trend = 0.03, respectively). The NEAP score provided similar findings. CONCLUSIONS/INTERPRETATION: We have demonstrated for the first time in a large prospective study that dietary acid load was positively associated with type 2 diabetes risk, independently of other known risk factors for diabetes. Our results need to be validated in other populations, and may lead to promotion of diets with a low acid load for the prevention of diabetes. Further research is required on the underlying mechanisms.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree true
53 schema:isPartOf N34c1e5c0fd43401f9baf4b36e57a1617
54 Neec3d66d5f62467bb6bf2d07c4c2d2e2
55 sg:journal.1001482
56 schema:name Dietary acid load and risk of type 2 diabetes: the E3N-EPIC cohort study
57 schema:pagination 313-320
58 schema:productId N1979c70791874750ba5e035c3f86589d
59 N513e1dc0a76044119a2a4a9f583be839
60 N683d44e0c8014b9cbfaeee532f4c077a
61 Nc890b32794d647dd9ff07aa7b6ced97e
62 Nfa8ace7680da45dfb5c7f8b3f922696c
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034360032
64 https://doi.org/10.1007/s00125-013-3100-0
65 schema:sdDatePublished 2019-04-11T10:19
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N2e4cf6eb3d184c9c8ce6a4c342cc6a87
68 schema:url https://link.springer.com/10.1007%2Fs00125-013-3100-0
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N01c6b30283e343d28f89129cfdd445bd rdf:first sg:person.01317056332.92
73 rdf:rest rdf:nil
74 N03b13a85718849d498957ca0f0f80f56 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Diabetes Mellitus, Type 2
76 rdf:type schema:DefinedTerm
77 N0c517eadc6324a11a5ee82add084221b rdf:first sg:person.011104534765.43
78 rdf:rest N01c6b30283e343d28f89129cfdd445bd
79 N151349d010944f4bbbe5f204147b9f52 rdf:first sg:person.010075340637.84
80 rdf:rest N0c517eadc6324a11a5ee82add084221b
81 N1979c70791874750ba5e035c3f86589d schema:name pubmed_id
82 schema:value 24232975
83 rdf:type schema:PropertyValue
84 N28f560cb5ed6432db594371ce292a914 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Dietary Proteins
86 rdf:type schema:DefinedTerm
87 N2d99d813a039484b88b9c9f2f763c6c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Female
89 rdf:type schema:DefinedTerm
90 N2e4cf6eb3d184c9c8ce6a4c342cc6a87 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 N34c1e5c0fd43401f9baf4b36e57a1617 schema:issueNumber 2
93 rdf:type schema:PublicationIssue
94 N4cf090c776944dfd9de55b9aa0c7873e rdf:first sg:person.01151713307.55
95 rdf:rest Nd668dfecdb2046eb91841b133ee48d90
96 N513e1dc0a76044119a2a4a9f583be839 schema:name readcube_id
97 schema:value a3ad5479c66432cdc89cf1640dce87173bd62f363fac64533f1f59aa8b1c9d87
98 rdf:type schema:PropertyValue
99 N5fe0d029420749968f86c01dc42ddabd rdf:first sg:person.01027327123.04
100 rdf:rest N151349d010944f4bbbe5f204147b9f52
101 N683d44e0c8014b9cbfaeee532f4c077a schema:name doi
102 schema:value 10.1007/s00125-013-3100-0
103 rdf:type schema:PropertyValue
104 N684e06e8021e4e00815abb1d9cea8e81 rdf:first sg:person.01055134515.82
105 rdf:rest N5fe0d029420749968f86c01dc42ddabd
106 N72b960bd38e04511b066f250cb97bd73 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Prospective Studies
108 rdf:type schema:DefinedTerm
109 N7770955d8b7d472cb623fc4b13191b42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Humans
111 rdf:type schema:DefinedTerm
112 N9ac5dd29de5044f48fc509a0fd64e8d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Diet Surveys
114 rdf:type schema:DefinedTerm
115 N9d7b7a4646734a79af0ed9e7ae22db83 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Acidosis
117 rdf:type schema:DefinedTerm
118 Na1533613f47943c4b2dad5368313932d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Middle Aged
120 rdf:type schema:DefinedTerm
121 Na8521920202b4100b772dfb5d334ffac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Diet
123 rdf:type schema:DefinedTerm
124 Nab678aad006148b0b8e930d6e8f0db6c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Blood Glucose
126 rdf:type schema:DefinedTerm
127 Nacb8e84838b34eb2b6f3a5723497ec9f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Proportional Hazards Models
129 rdf:type schema:DefinedTerm
130 Nb3747a4b87624b35890afeae62660261 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Energy Intake
132 rdf:type schema:DefinedTerm
133 Nbb4267e7ad0b4f729f8b90e4d00c7ee3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Dietary Fats
135 rdf:type schema:DefinedTerm
136 Nbe8021fbefa14bcebf9b8a1b32339b20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Incidence
138 rdf:type schema:DefinedTerm
139 Nc32f36dfdd4c40edb0d1e8649fe2367c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Surveys and Questionnaires
141 rdf:type schema:DefinedTerm
142 Nc890b32794d647dd9ff07aa7b6ced97e schema:name nlm_unique_id
143 schema:value 0006777
144 rdf:type schema:PropertyValue
145 Nd668dfecdb2046eb91841b133ee48d90 rdf:first sg:person.0603244103.30
146 rdf:rest N684e06e8021e4e00815abb1d9cea8e81
147 Nd985eadfe3514dffac2ae46d9fff0443 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Follow-Up Studies
149 rdf:type schema:DefinedTerm
150 Ndbfb5c9327704fe7a77583c4d9038dd7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Biomarkers
152 rdf:type schema:DefinedTerm
153 Ndf8be144c3094976806679487b92a86c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Risk Factors
155 rdf:type schema:DefinedTerm
156 Neec3d66d5f62467bb6bf2d07c4c2d2e2 schema:volumeNumber 57
157 rdf:type schema:PublicationVolume
158 Neecd3d35610f4a9fb684ec962b843ec7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Health Promotion
160 rdf:type schema:DefinedTerm
161 Nfa8ace7680da45dfb5c7f8b3f922696c schema:name dimensions_id
162 schema:value pub.1034360032
163 rdf:type schema:PropertyValue
164 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
165 schema:name Medical and Health Sciences
166 rdf:type schema:DefinedTerm
167 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
168 schema:name Clinical Sciences
169 rdf:type schema:DefinedTerm
170 sg:journal.1001482 schema:issn 0012-186X
171 1432-0428
172 schema:name Diabetologia
173 rdf:type schema:Periodical
174 sg:person.010075340637.84 schema:affiliation https://www.grid.ac/institutes/grid.14925.3b
175 schema:familyName Balkau
176 schema:givenName Beverley
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010075340637.84
178 rdf:type schema:Person
179 sg:person.01027327123.04 schema:affiliation https://www.grid.ac/institutes/grid.415771.1
180 schema:familyName Lajous
181 schema:givenName Martin
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027327123.04
183 rdf:type schema:Person
184 sg:person.01055134515.82 schema:affiliation https://www.grid.ac/institutes/grid.411154.4
185 schema:familyName Bonnet
186 schema:givenName Fabrice
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055134515.82
188 rdf:type schema:Person
189 sg:person.011104534765.43 schema:affiliation https://www.grid.ac/institutes/grid.14925.3b
190 schema:familyName Boutron-Ruault
191 schema:givenName Marie-Christine
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011104534765.43
193 rdf:type schema:Person
194 sg:person.01151713307.55 schema:affiliation https://www.grid.ac/institutes/grid.14925.3b
195 schema:familyName Fagherazzi
196 schema:givenName Guy
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151713307.55
198 rdf:type schema:Person
199 sg:person.01317056332.92 schema:affiliation https://www.grid.ac/institutes/grid.14925.3b
200 schema:familyName Clavel-Chapelon
201 schema:givenName Françoise
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317056332.92
203 rdf:type schema:Person
204 sg:person.0603244103.30 schema:affiliation https://www.grid.ac/institutes/grid.14925.3b
205 schema:familyName Vilier
206 schema:givenName Alice
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603244103.30
208 rdf:type schema:Person
209 sg:pub.10.1046/j.1523-1755.2002.00508.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024716209
210 https://doi.org/10.1046/j.1523-1755.2002.00508.x
211 rdf:type schema:CreativeWork
212 https://app.dimensions.ai/details/publication/pub.1077247721 schema:CreativeWork
213 https://doi.org/10.1016/0026-0495(82)90094-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034436508
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.clnu.2011.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051387622
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/s0002-8223(95)00219-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005850554
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1053/ajkd.2002.34504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005349622
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1089/met.2010.0108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059298698
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1093/ajcn/21.5.451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1081242441
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1093/ajcn/59.6.1356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082697879
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1093/ajcn/68.3.576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083315482
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1093/ajcn/76.6.1308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075195890
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1093/ajcn/77.5.1255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075276234
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1093/aje/kwp257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010826822
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1093/ije/26.suppl_1.s128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001227032
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1093/ije/dyq126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002679828
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1111/j.1464-5491.2008.02471.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004851986
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1152/ajpendo.1978.234.4.e426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079774350
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1152/ajpendo.1979.236.4.e328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1080286821
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1161/hypertensionaha.109.135582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029794635
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1503/cmaj.120438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042907635
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1681/asn.2005121246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043516633
250 rdf:type schema:CreativeWork
251 https://doi.org/10.2215/cjn.00670207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007141992
252 rdf:type schema:CreativeWork
253 https://doi.org/10.3945/ajcn.111.022343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006719213
254 rdf:type schema:CreativeWork
255 https://doi.org/10.5301/jn.2010.5711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072750182
256 rdf:type schema:CreativeWork
257 https://www.grid.ac/institutes/grid.14925.3b schema:alternateName Institut Gustave Roussy
258 schema:name Center for Research in Epidemiology and Population Health (CESP), Inserm U1018, Team 9, Nutrition, Hormones and Women’s Health, Gustave Roussy Institute, 114 rue Edouard Vaillant, 94805, Villejuif Cedex, France
259 Paris-South University, Villejuif, France
260 rdf:type schema:Organization
261 https://www.grid.ac/institutes/grid.411154.4 schema:alternateName Centre Hospitalier Universitaire de Rennes
262 schema:name CHU, Rennes, France
263 rdf:type schema:Organization
264 https://www.grid.ac/institutes/grid.415771.1 schema:alternateName Instituto Nacional de Salud Pública
265 schema:name Center for Research on Population Health, National Institute of Public Health of Mexico, Cuernavaca, Mexico
266 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...