Prediction of mortality and macrovascular complications in type 2 diabetes: validation of the UKPDS Outcomes Model in the Casale Monferrato ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-05-17

AUTHORS

E. Pagano, A. Gray, R. Rosato, G. Gruden, P. Cavallo Perin, F. Merletti, G. Bruno

ABSTRACT

Aims/hypothesisThe United Kingdom Prospective Diabetes Study (UKPDS) Outcomes Model can be used to estimate the lifetime occurrence of major diabetes-related complications in order to calculate health economic outcomes. The aim of the study was to assess the performance of the model by comparing the predicted and observed mortality and the incidence of macrovascular complications in an Italian population-based cohort with type 2 diabetes.MethodsWe used data from the Casale Monferrato Survey, a cohort enrolled in 1988 and surveyed in 1991 (n = 1,967) to assess the prevalence of cardiovascular risk factors. In 2000, a new survey included all the members of the original cohort who were still alive (n = 860), and in addition all individuals identified with a new diagnosis of type 2 diabetes since 1993 (n = 2,389). We compared the mortality predicted by the model for the 1991 survey over the subsequent 17-year period with the observed risk. The following outcomes were analysed in the 2000 survey: myocardial infarction (MI), other ischaemic heart disease, stroke, congestive heart failure (CHF) and amputation.ResultsFor all-cause mortality, the predictions from the model at 5 and 10 years (23% and 47%, respectively) were identical to the observed risks. At 15 years, the risk of death was slightly overestimated (an estimate of 67% vs 64% observed, 95% CI 61%, 66%). The performance of the model was best for patients with a recent history of disease (duration <6 years). Among the complications, the predicted cumulative incidences of MI and CHF were very close to those observed.Conclusions/interpretationExternal validation is essential to assess the accuracy of simulation models. The UKPDS Outcomes Model satisfactorily predicted a set of actual incidences of mortality and complications in an Italian diabetes cohort up to a duration of approximately 12 years. The longer term performance of such models should be carefully evaluated. More... »

PAGES

1726-1734

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00125-013-2933-x

DOI

http://dx.doi.org/10.1007/s00125-013-2933-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016842230

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23680916


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cardiovascular Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diabetes Complications", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diabetes Mellitus, Type 2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Italy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Unit of Cancer Epidemiology and CPO Piemonte, Azienda Ospedaliera Citt\u00e0 della Salute e della Scienza and University of Turin, Via Santena 7, 10126, Turin, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7605.4", 
          "name": [
            "Unit of Cancer Epidemiology and CPO Piemonte, Azienda Ospedaliera Citt\u00e0 della Salute e della Scienza and University of Turin, Via Santena 7, 10126, Turin, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pagano", 
        "givenName": "E.", 
        "id": "sg:person.0711014373.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711014373.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Health Economics Research Centre, Department of Public Health, University of Oxford, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Health Economics Research Centre, Department of Public Health, University of Oxford, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gray", 
        "givenName": "A.", 
        "id": "sg:person.01307325071.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307325071.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Psychology, University of Turin, Turin, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7605.4", 
          "name": [
            "Department of Psychology, University of Turin, Turin, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rosato", 
        "givenName": "R.", 
        "id": "sg:person.0653600740.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653600740.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medical Sciences, University of Turin, Turin, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7605.4", 
          "name": [
            "Department of Medical Sciences, University of Turin, Turin, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gruden", 
        "givenName": "G.", 
        "id": "sg:person.0615047361.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615047361.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medical Sciences, University of Turin, Turin, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7605.4", 
          "name": [
            "Department of Medical Sciences, University of Turin, Turin, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perin", 
        "givenName": "P. Cavallo", 
        "id": "sg:person.01170640003.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170640003.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Unit of Cancer Epidemiology and CPO Piemonte, Azienda Ospedaliera Citt\u00e0 della Salute e della Scienza and University of Turin, Via Santena 7, 10126, Turin, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7605.4", 
          "name": [
            "Unit of Cancer Epidemiology and CPO Piemonte, Azienda Ospedaliera Citt\u00e0 della Salute e della Scienza and University of Turin, Via Santena 7, 10126, Turin, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Merletti", 
        "givenName": "F.", 
        "id": "sg:person.01076227130.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076227130.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medical Sciences, University of Turin, Turin, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7605.4", 
          "name": [
            "Department of Medical Sciences, University of Turin, Turin, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bruno", 
        "givenName": "G.", 
        "id": "sg:person.0615641460.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615641460.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00125-004-1527-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036304902", 
          "https://doi.org/10.1007/s00125-004-1527-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00400195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022043816", 
          "https://doi.org/10.1007/bf00400195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00400637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023534968", 
          "https://doi.org/10.1007/bf00400637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001250051154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020833498", 
          "https://doi.org/10.1007/s001250051154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00399931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032980074", 
          "https://doi.org/10.1007/bf00399931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-005-1717-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003605836", 
          "https://doi.org/10.1007/s00125-005-1717-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-05-17", 
    "datePublishedReg": "2013-05-17", 
    "description": "Aims/hypothesisThe United Kingdom Prospective Diabetes Study (UKPDS) Outcomes Model can be used to estimate the lifetime occurrence of major diabetes-related complications in order to calculate health economic outcomes. The aim of the study was to assess the performance of the model by comparing the predicted and observed mortality and the incidence of macrovascular complications in an Italian population-based cohort with type 2 diabetes.MethodsWe used data from the Casale Monferrato Survey, a cohort enrolled in 1988 and surveyed in 1991 (n\u2009=\u20091,967) to assess the prevalence of cardiovascular risk factors. In 2000, a new survey included all the members of the original cohort who were still alive (n\u2009=\u2009860), and in addition all individuals identified with a new diagnosis of type 2 diabetes since 1993 (n\u2009=\u20092,389). We compared the mortality predicted by the model for the 1991 survey over the subsequent 17-year period with the observed risk. The following outcomes were analysed in the 2000 survey: myocardial infarction (MI), other ischaemic heart disease, stroke, congestive heart failure (CHF) and amputation.ResultsFor all-cause mortality, the predictions from the model at 5 and 10\u00a0years (23% and 47%, respectively) were identical to the observed risks. At 15\u00a0years, the risk of death was slightly overestimated (an estimate of 67% vs 64% observed, 95% CI 61%, 66%). The performance of the model was best for patients with a recent history of disease (duration <6\u00a0years). Among the complications, the predicted cumulative incidences of MI and CHF were very close to those observed.Conclusions/interpretationExternal validation is essential to assess the accuracy of simulation models. The UKPDS Outcomes Model satisfactorily predicted a set of actual incidences of mortality and complications in an Italian diabetes cohort up to a duration of approximately 12\u00a0years. The longer term performance of such models should be carefully evaluated.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00125-013-2933-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2773877", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1001482", 
        "issn": [
          "0012-186X", 
          "1432-0428"
        ], 
        "name": "Diabetologia", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "56"
      }
    ], 
    "keywords": [
      "congestive heart failure", 
      "type 2 diabetes", 
      "UKPDS Outcomes Model", 
      "myocardial infarction", 
      "macrovascular complications", 
      "observed risk", 
      "United Kingdom Prospective Diabetes Study (UKPDS) Outcomes Model", 
      "Italian population-based cohort", 
      "cardiovascular risk factors", 
      "diabetes-related complications", 
      "population-based cohort", 
      "ischemic heart disease", 
      "major diabetes-related complications", 
      "risk of death", 
      "prediction of mortality", 
      "health economic outcomes", 
      "outcome model", 
      "cause mortality", 
      "heart failure", 
      "cumulative incidence", 
      "diabetes cohort", 
      "original cohort", 
      "risk factors", 
      "heart disease", 
      "following outcomes", 
      "lifetime occurrence", 
      "new diagnosis", 
      "complications", 
      "actual incidence", 
      "mortality", 
      "cohort", 
      "diabetes", 
      "incidence", 
      "disease", 
      "risk", 
      "outcomes", 
      "economic outcomes", 
      "years", 
      "infarction", 
      "patients", 
      "amputation", 
      "stroke", 
      "MethodsWe", 
      "prevalence", 
      "diagnosis", 
      "death", 
      "survey", 
      "duration", 
      "failure", 
      "aim", 
      "recent history", 
      "individuals", 
      "period", 
      "factors", 
      "history", 
      "study", 
      "occurrence", 
      "validation", 
      "addition", 
      "data", 
      "model", 
      "members", 
      "Italy", 
      "new survey", 
      "prediction", 
      "long-term performance", 
      "accuracy", 
      "order", 
      "performance", 
      "such models", 
      "set", 
      "term performance", 
      "simulation model", 
      "Aims/hypothesisThe United Kingdom Prospective Diabetes Study (UKPDS) Outcomes Model", 
      "hypothesisThe United Kingdom Prospective Diabetes Study (UKPDS) Outcomes Model", 
      "Kingdom Prospective Diabetes Study (UKPDS) Outcomes Model", 
      "Prospective Diabetes Study (UKPDS) Outcomes Model", 
      "Diabetes Study (UKPDS) Outcomes Model", 
      "Study (UKPDS) Outcomes Model", 
      "Casale Monferrato Survey", 
      "Monferrato Survey", 
      "Conclusions/interpretationExternal validation", 
      "interpretationExternal validation", 
      "Italian diabetes cohort"
    ], 
    "name": "Prediction of mortality and macrovascular complications in type 2 diabetes: validation of the UKPDS Outcomes Model in the Casale Monferrato Survey, Italy", 
    "pagination": "1726-1734", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016842230"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00125-013-2933-x"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23680916"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00125-013-2933-x", 
      "https://app.dimensions.ai/details/publication/pub.1016842230"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_600.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00125-013-2933-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00125-013-2933-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00125-013-2933-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00125-013-2933-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00125-013-2933-x'


 

This table displays all metadata directly associated to this object as RDF triples.

261 TRIPLES      22 PREDICATES      126 URIs      111 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00125-013-2933-x schema:about N244218618ddd43c88a00bc264f95a9c9
2 N68165dbf961c41b28b657c41183f321b
3 N7e381e9581694fddabcb82ca043bd05c
4 N7e6683e7d0744d90a7bc059d3c9369db
5 N918c8e4321f14387bd17be3144754b98
6 Na5b1b91007f948b4a5c0c2b6733bab08
7 Naf570fdea6224ce5bbf5530840483095
8 Ncee0000b1a8440e09ce3f839c78b1b60
9 Ndb31ce837fbf4d1f8cc28102aa399c16
10 anzsrc-for:11
11 anzsrc-for:1103
12 anzsrc-for:1117
13 schema:author Nf5c9d58dfd0441e8aab7e625aaf1b700
14 schema:citation sg:pub.10.1007/bf00399931
15 sg:pub.10.1007/bf00400195
16 sg:pub.10.1007/bf00400637
17 sg:pub.10.1007/s00125-004-1527-z
18 sg:pub.10.1007/s00125-005-1717-3
19 sg:pub.10.1007/s001250051154
20 schema:datePublished 2013-05-17
21 schema:datePublishedReg 2013-05-17
22 schema:description Aims/hypothesisThe United Kingdom Prospective Diabetes Study (UKPDS) Outcomes Model can be used to estimate the lifetime occurrence of major diabetes-related complications in order to calculate health economic outcomes. The aim of the study was to assess the performance of the model by comparing the predicted and observed mortality and the incidence of macrovascular complications in an Italian population-based cohort with type 2 diabetes.MethodsWe used data from the Casale Monferrato Survey, a cohort enrolled in 1988 and surveyed in 1991 (n = 1,967) to assess the prevalence of cardiovascular risk factors. In 2000, a new survey included all the members of the original cohort who were still alive (n = 860), and in addition all individuals identified with a new diagnosis of type 2 diabetes since 1993 (n = 2,389). We compared the mortality predicted by the model for the 1991 survey over the subsequent 17-year period with the observed risk. The following outcomes were analysed in the 2000 survey: myocardial infarction (MI), other ischaemic heart disease, stroke, congestive heart failure (CHF) and amputation.ResultsFor all-cause mortality, the predictions from the model at 5 and 10 years (23% and 47%, respectively) were identical to the observed risks. At 15 years, the risk of death was slightly overestimated (an estimate of 67% vs 64% observed, 95% CI 61%, 66%). The performance of the model was best for patients with a recent history of disease (duration <6 years). Among the complications, the predicted cumulative incidences of MI and CHF were very close to those observed.Conclusions/interpretationExternal validation is essential to assess the accuracy of simulation models. The UKPDS Outcomes Model satisfactorily predicted a set of actual incidences of mortality and complications in an Italian diabetes cohort up to a duration of approximately 12 years. The longer term performance of such models should be carefully evaluated.
23 schema:genre article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N6b6b07f14fbf4b09820d7211eebe5a02
27 Nf536c47d447e408db20558012ff9f0c8
28 sg:journal.1001482
29 schema:keywords Aims/hypothesisThe United Kingdom Prospective Diabetes Study (UKPDS) Outcomes Model
30 Casale Monferrato Survey
31 Conclusions/interpretationExternal validation
32 Diabetes Study (UKPDS) Outcomes Model
33 Italian diabetes cohort
34 Italian population-based cohort
35 Italy
36 Kingdom Prospective Diabetes Study (UKPDS) Outcomes Model
37 MethodsWe
38 Monferrato Survey
39 Prospective Diabetes Study (UKPDS) Outcomes Model
40 Study (UKPDS) Outcomes Model
41 UKPDS Outcomes Model
42 United Kingdom Prospective Diabetes Study (UKPDS) Outcomes Model
43 accuracy
44 actual incidence
45 addition
46 aim
47 amputation
48 cardiovascular risk factors
49 cause mortality
50 cohort
51 complications
52 congestive heart failure
53 cumulative incidence
54 data
55 death
56 diabetes
57 diabetes cohort
58 diabetes-related complications
59 diagnosis
60 disease
61 duration
62 economic outcomes
63 factors
64 failure
65 following outcomes
66 health economic outcomes
67 heart disease
68 heart failure
69 history
70 hypothesisThe United Kingdom Prospective Diabetes Study (UKPDS) Outcomes Model
71 incidence
72 individuals
73 infarction
74 interpretationExternal validation
75 ischemic heart disease
76 lifetime occurrence
77 long-term performance
78 macrovascular complications
79 major diabetes-related complications
80 members
81 model
82 mortality
83 myocardial infarction
84 new diagnosis
85 new survey
86 observed risk
87 occurrence
88 order
89 original cohort
90 outcome model
91 outcomes
92 patients
93 performance
94 period
95 population-based cohort
96 prediction
97 prediction of mortality
98 prevalence
99 recent history
100 risk
101 risk factors
102 risk of death
103 set
104 simulation model
105 stroke
106 study
107 such models
108 survey
109 term performance
110 type 2 diabetes
111 validation
112 years
113 schema:name Prediction of mortality and macrovascular complications in type 2 diabetes: validation of the UKPDS Outcomes Model in the Casale Monferrato Survey, Italy
114 schema:pagination 1726-1734
115 schema:productId N3377bd530271483db2a88eb225061172
116 N81e5bedf134c4f5baecce53733de5093
117 N988334c7782f4929ae26ad5b8e149ca9
118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016842230
119 https://doi.org/10.1007/s00125-013-2933-x
120 schema:sdDatePublished 2021-11-01T18:20
121 schema:sdLicense https://scigraph.springernature.com/explorer/license/
122 schema:sdPublisher N101edcef2042494cb75dd6082161d85b
123 schema:url https://doi.org/10.1007/s00125-013-2933-x
124 sgo:license sg:explorer/license/
125 sgo:sdDataset articles
126 rdf:type schema:ScholarlyArticle
127 N101edcef2042494cb75dd6082161d85b schema:name Springer Nature - SN SciGraph project
128 rdf:type schema:Organization
129 N244218618ddd43c88a00bc264f95a9c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Female
131 rdf:type schema:DefinedTerm
132 N2c78134e5c904ed5b65ba3cf22df2b8d rdf:first sg:person.01170640003.74
133 rdf:rest N91b9d03082424e0197b2162d357e47da
134 N3377bd530271483db2a88eb225061172 schema:name pubmed_id
135 schema:value 23680916
136 rdf:type schema:PropertyValue
137 N48a55f781d7249829474cd3daf8f8724 rdf:first sg:person.0653600740.00
138 rdf:rest Nfe510d587739438faf291a4899452b52
139 N5d69b5e391de444c90653d5ff244c30f rdf:first sg:person.0615641460.62
140 rdf:rest rdf:nil
141 N68165dbf961c41b28b657c41183f321b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Male
143 rdf:type schema:DefinedTerm
144 N6b6b07f14fbf4b09820d7211eebe5a02 schema:issueNumber 8
145 rdf:type schema:PublicationIssue
146 N7e381e9581694fddabcb82ca043bd05c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Aged
148 rdf:type schema:DefinedTerm
149 N7e6683e7d0744d90a7bc059d3c9369db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Diabetes Complications
151 rdf:type schema:DefinedTerm
152 N81e5bedf134c4f5baecce53733de5093 schema:name dimensions_id
153 schema:value pub.1016842230
154 rdf:type schema:PropertyValue
155 N918c8e4321f14387bd17be3144754b98 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Italy
157 rdf:type schema:DefinedTerm
158 N91b9d03082424e0197b2162d357e47da rdf:first sg:person.01076227130.29
159 rdf:rest N5d69b5e391de444c90653d5ff244c30f
160 N988334c7782f4929ae26ad5b8e149ca9 schema:name doi
161 schema:value 10.1007/s00125-013-2933-x
162 rdf:type schema:PropertyValue
163 Na5b1b91007f948b4a5c0c2b6733bab08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Cardiovascular Diseases
165 rdf:type schema:DefinedTerm
166 Naf570fdea6224ce5bbf5530840483095 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Diabetes Mellitus, Type 2
168 rdf:type schema:DefinedTerm
169 Ncee0000b1a8440e09ce3f839c78b1b60 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Middle Aged
171 rdf:type schema:DefinedTerm
172 Nd82a9a1cb763448f8e532cc14b09acff rdf:first sg:person.01307325071.02
173 rdf:rest N48a55f781d7249829474cd3daf8f8724
174 Ndb31ce837fbf4d1f8cc28102aa399c16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Humans
176 rdf:type schema:DefinedTerm
177 Nf536c47d447e408db20558012ff9f0c8 schema:volumeNumber 56
178 rdf:type schema:PublicationVolume
179 Nf5c9d58dfd0441e8aab7e625aaf1b700 rdf:first sg:person.0711014373.34
180 rdf:rest Nd82a9a1cb763448f8e532cc14b09acff
181 Nfe510d587739438faf291a4899452b52 rdf:first sg:person.0615047361.40
182 rdf:rest N2c78134e5c904ed5b65ba3cf22df2b8d
183 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
184 schema:name Medical and Health Sciences
185 rdf:type schema:DefinedTerm
186 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
187 schema:name Clinical Sciences
188 rdf:type schema:DefinedTerm
189 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
190 schema:name Public Health and Health Services
191 rdf:type schema:DefinedTerm
192 sg:grant.2773877 http://pending.schema.org/fundedItem sg:pub.10.1007/s00125-013-2933-x
193 rdf:type schema:MonetaryGrant
194 sg:journal.1001482 schema:issn 0012-186X
195 1432-0428
196 schema:name Diabetologia
197 schema:publisher Springer Nature
198 rdf:type schema:Periodical
199 sg:person.01076227130.29 schema:affiliation grid-institutes:grid.7605.4
200 schema:familyName Merletti
201 schema:givenName F.
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076227130.29
203 rdf:type schema:Person
204 sg:person.01170640003.74 schema:affiliation grid-institutes:grid.7605.4
205 schema:familyName Perin
206 schema:givenName P. Cavallo
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170640003.74
208 rdf:type schema:Person
209 sg:person.01307325071.02 schema:affiliation grid-institutes:grid.4991.5
210 schema:familyName Gray
211 schema:givenName A.
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307325071.02
213 rdf:type schema:Person
214 sg:person.0615047361.40 schema:affiliation grid-institutes:grid.7605.4
215 schema:familyName Gruden
216 schema:givenName G.
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615047361.40
218 rdf:type schema:Person
219 sg:person.0615641460.62 schema:affiliation grid-institutes:grid.7605.4
220 schema:familyName Bruno
221 schema:givenName G.
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615641460.62
223 rdf:type schema:Person
224 sg:person.0653600740.00 schema:affiliation grid-institutes:grid.7605.4
225 schema:familyName Rosato
226 schema:givenName R.
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653600740.00
228 rdf:type schema:Person
229 sg:person.0711014373.34 schema:affiliation grid-institutes:grid.7605.4
230 schema:familyName Pagano
231 schema:givenName E.
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711014373.34
233 rdf:type schema:Person
234 sg:pub.10.1007/bf00399931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032980074
235 https://doi.org/10.1007/bf00399931
236 rdf:type schema:CreativeWork
237 sg:pub.10.1007/bf00400195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022043816
238 https://doi.org/10.1007/bf00400195
239 rdf:type schema:CreativeWork
240 sg:pub.10.1007/bf00400637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023534968
241 https://doi.org/10.1007/bf00400637
242 rdf:type schema:CreativeWork
243 sg:pub.10.1007/s00125-004-1527-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1036304902
244 https://doi.org/10.1007/s00125-004-1527-z
245 rdf:type schema:CreativeWork
246 sg:pub.10.1007/s00125-005-1717-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003605836
247 https://doi.org/10.1007/s00125-005-1717-3
248 rdf:type schema:CreativeWork
249 sg:pub.10.1007/s001250051154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020833498
250 https://doi.org/10.1007/s001250051154
251 rdf:type schema:CreativeWork
252 grid-institutes:grid.4991.5 schema:alternateName Health Economics Research Centre, Department of Public Health, University of Oxford, Oxford, UK
253 schema:name Health Economics Research Centre, Department of Public Health, University of Oxford, Oxford, UK
254 rdf:type schema:Organization
255 grid-institutes:grid.7605.4 schema:alternateName Department of Medical Sciences, University of Turin, Turin, Italy
256 Department of Psychology, University of Turin, Turin, Italy
257 Unit of Cancer Epidemiology and CPO Piemonte, Azienda Ospedaliera Città della Salute e della Scienza and University of Turin, Via Santena 7, 10126, Turin, Italy
258 schema:name Department of Medical Sciences, University of Turin, Turin, Italy
259 Department of Psychology, University of Turin, Turin, Italy
260 Unit of Cancer Epidemiology and CPO Piemonte, Azienda Ospedaliera Città della Salute e della Scienza and University of Turin, Via Santena 7, 10126, Turin, Italy
261 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...