Multifactor-dimensionality reduction shows a two-locus interaction associated with Type 2 diabetes mellitus View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-03-01

AUTHORS

Y. M. Cho, M. D. Ritchie, J. H. Moore, J. Y. Park, K.-U. Lee, H. D. Shin, H. K. Lee, K. S. Park

ABSTRACT

Aims/hypothesisType 2 diabetes mellitus is a complex genetic disease, which results from interactions between multiple genes and environmental factors without any single factor having strong independent effects. This study was done to identify gene to gene interactions which could be associated with the risk of Type 2 diabetes.MethodsWe genotyped 23 different loci in the 15 candidate genes of Type 2 diabetes in 504 unrelated Type 2 diabetic patients and 133 non-diabetic control subjects. We analysed gene to gene interactions among 23 polymorphic loci using the multifactor-dimensionality reduction (MDR) method, which has been shown to be effective for detecting and characterising gene to gene interactions in case-control studies with relatively small samples.ResultsThe MDR analysis showed a significant gene to gene interaction between the Ala55Val polymorphism in the uncoupling protein 2 gene (UCP2) and the 161C>T polymorphism in the exon 6 of peroxisome proliferator-activated receptor γ (PPARγ) gene. This interaction showed the maximum consistency and minimum prediction error among all gene to gene interaction models evaluated. Moreover, the combination of the UCP2 55 Ala/Val heterozygote and the PPARγ 161 C/C homozygote was associated with a reduced risk of Type 2 diabetes (odds ratio: 0.51, 95% CI: 0.34 to 0.77, p=0.0016).Conclusions/interpretationUsing the MDR method, we showed a two-locus interaction between the UCP2 and PPARγ genes among 23 loci in the candidate genes of Type 2 diabetes. The determination of such genotype combinations contributing to Type 2 diabetes mellitus could provide a new tool for identifying high-risk individuals. More... »

PAGES

549-554

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00125-003-1321-3

DOI

http://dx.doi.org/10.1007/s00125-003-1321-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049795039

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/14730379


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Substitution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosome Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diabetes Mellitus, Type 2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ion Channels", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Membrane Transport Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mitochondrial Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "PPAR gamma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Uncoupling Protein 2", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Genome Research Center for Diabetes and Endocrine Disease, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Internal Medicine, Seoul National University College of Medicine, 28 Yongon-Dong Chongno-Gu, 110-744, Seoul, Korea", 
            "Genome Research Center for Diabetes and Endocrine Disease, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cho", 
        "givenName": "Y. M.", 
        "id": "sg:person.012016565667.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012016565667.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Program in Human Genetics and Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee, USA", 
          "id": "http://www.grid.ac/institutes/grid.152326.1", 
          "name": [
            "Program in Human Genetics and Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ritchie", 
        "givenName": "M. D.", 
        "id": "sg:person.01101077522.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101077522.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Program in Human Genetics and Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee, USA", 
          "id": "http://www.grid.ac/institutes/grid.152326.1", 
          "name": [
            "Program in Human Genetics and Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moore", 
        "givenName": "J. H.", 
        "id": "sg:person.07517464062.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07517464062.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, University of Ulsan School of Medicine, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.267370.7", 
          "name": [
            "Department of Internal Medicine, University of Ulsan School of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "J. Y.", 
        "id": "sg:person.014104715634.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014104715634.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, University of Ulsan School of Medicine, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.267370.7", 
          "name": [
            "Department of Internal Medicine, University of Ulsan School of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "K.-U.", 
        "id": "sg:person.01036122220.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036122220.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Genetic Epidemiology, SNP Genetics, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.452424.1", 
          "name": [
            "Department of Genetic Epidemiology, SNP Genetics, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shin", 
        "givenName": "H. D.", 
        "id": "sg:person.012615431577.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012615431577.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, Seoul National University College of Medicine, 28 Yongon-Dong Chongno-Gu, 110-744, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Internal Medicine, Seoul National University College of Medicine, 28 Yongon-Dong Chongno-Gu, 110-744, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "H. K.", 
        "id": "sg:person.0664736027.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664736027.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genome Research Center for Diabetes and Endocrine Disease, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Internal Medicine, Seoul National University College of Medicine, 28 Yongon-Dong Chongno-Gu, 110-744, Seoul, Korea", 
            "Genome Research Center for Diabetes and Endocrine Disease, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "K. S.", 
        "id": "sg:person.012755355137.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012755355137.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/6002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023123823", 
          "https://doi.org/10.1038/6002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/79876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050773546", 
          "https://doi.org/10.1038/79876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0801194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002563028", 
          "https://doi.org/10.1038/sj.ijo.0801194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001250100596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049861008", 
          "https://doi.org/10.1007/s001250100596"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-03-01", 
    "datePublishedReg": "2004-03-01", 
    "description": "Aims/hypothesisType 2 diabetes mellitus is a complex genetic disease, which results from interactions between multiple genes and environmental factors without any single factor having strong independent effects. This study was done to identify gene to gene interactions which could be associated with the risk of Type 2 diabetes.MethodsWe genotyped 23 different loci in the 15 candidate genes of Type 2 diabetes in 504 unrelated Type 2 diabetic patients and 133 non-diabetic control subjects. We analysed gene to gene interactions among 23 polymorphic loci using the multifactor-dimensionality reduction (MDR) method, which has been shown to be effective for detecting and characterising gene to gene interactions in case-control studies with relatively small samples.ResultsThe MDR analysis showed a significant gene to gene interaction between the Ala55Val polymorphism in the uncoupling protein 2 gene (UCP2) and the 161C>T polymorphism in the exon 6 of peroxisome proliferator-activated receptor \u03b3 (PPAR\u03b3) gene. This interaction showed the maximum consistency and minimum prediction error among all gene to gene interaction models evaluated. Moreover, the combination of the UCP2 55 Ala/Val heterozygote and the PPAR\u03b3 161 C/C homozygote was associated with a reduced risk of Type 2 diabetes (odds ratio: 0.51, 95% CI: 0.34 to 0.77, p=0.0016).Conclusions/interpretationUsing the MDR method, we showed a two-locus interaction between the UCP2 and PPAR\u03b3 genes among 23 loci in the candidate genes of Type 2 diabetes. The determination of such genotype combinations contributing to Type 2 diabetes mellitus could provide a new tool for identifying high-risk individuals.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00125-003-1321-3", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1001482", 
        "issn": [
          "0012-186X", 
          "1432-0428"
        ], 
        "name": "Diabetologia", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "keywords": [
      "type 2 diabetes", 
      "type 2 diabetes mellitus", 
      "diabetes mellitus", 
      "Aims/hypothesisType 2 diabetes mellitus", 
      "unrelated type 2 diabetic patients", 
      "type 2 diabetic patients", 
      "non-diabetic control subjects", 
      "peroxisome proliferator-activated receptor \u03b3 gene", 
      "case-control study", 
      "high-risk individuals", 
      "receptor \u03b3 gene", 
      "diabetic patients", 
      "control subjects", 
      "Conclusions/", 
      "T polymorphism", 
      "Ala55Val polymorphism", 
      "diabetes", 
      "protein 2 gene", 
      "mellitus", 
      "C homozygotes", 
      "strong independent effect", 
      "PPAR\u03b3 gene", 
      "independent effects", 
      "MDR analysis", 
      "multifactor dimensionality reduction", 
      "multifactor dimensionality reduction method", 
      "genotype combinations", 
      "candidate genes", 
      "\u03b3 gene", 
      "complex genetic diseases", 
      "risk", 
      "exon 6", 
      "genetic diseases", 
      "polymorphism", 
      "patients", 
      "genes", 
      "MethodsWe", 
      "disease", 
      "multiple genes", 
      "environmental factors", 
      "single factor", 
      "two-locus interactions", 
      "significant genes", 
      "factors", 
      "UCP2", 
      "study", 
      "homozygotes", 
      "subjects", 
      "gene interactions", 
      "heterozygotes", 
      "individuals", 
      "combination", 
      "small samples", 
      "new tool", 
      "MDR method", 
      "different loci", 
      "loci", 
      "reduction", 
      "effect", 
      "samples", 
      "interaction", 
      "method", 
      "analysis", 
      "consistency", 
      "tool", 
      "polymorphic loci", 
      "model", 
      "determination", 
      "prediction error", 
      "maximum consistency", 
      "minimum prediction error", 
      "interaction model", 
      "gene interaction model", 
      "error", 
      "reduction method"
    ], 
    "name": "Multifactor-dimensionality reduction shows a two-locus interaction associated with Type 2 diabetes mellitus", 
    "pagination": "549-554", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049795039"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00125-003-1321-3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "14730379"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00125-003-1321-3", 
      "https://app.dimensions.ai/details/publication/pub.1049795039"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_392.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00125-003-1321-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00125-003-1321-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00125-003-1321-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00125-003-1321-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00125-003-1321-3'


 

This table displays all metadata directly associated to this object as RDF triples.

274 TRIPLES      21 PREDICATES      119 URIs      107 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00125-003-1321-3 schema:about N1077d4a887964d159f07cc494e0a1e74
2 N10fb515ae0ba4f69b0dd8b148abcb978
3 N1373a19e09324aa5b55dd2f661bbb36e
4 N199ba313f167475ebc8d021734329545
5 N2ab716e5365041e398030ae20d02606e
6 N43edcc0e4d7445d1aef9ab8d213d5066
7 N446222344a974587b4dae3084cb5e6f2
8 N5801de41c2ad4efdb5f7f8a9ea26d323
9 N59978eccbe114f2ba286bc9192501752
10 N607c91f7c8aa47089ab1664e1331fe01
11 N6530456effee4d799910be17d715341e
12 N77279150b40a479c9ec5f0ee1e2c855d
13 N79f99dc01bda452fb87eb0e8cab47979
14 N9d7c5c7c8f664fb4b574693f43864483
15 Nba928bc9a857404a8f479417af3e576b
16 anzsrc-for:11
17 anzsrc-for:1103
18 schema:author Ne980af802da541329dacae03b9b5a28e
19 schema:citation sg:pub.10.1007/s001250100596
20 sg:pub.10.1038/6002
21 sg:pub.10.1038/79876
22 sg:pub.10.1038/sj.ijo.0801194
23 schema:datePublished 2004-03-01
24 schema:datePublishedReg 2004-03-01
25 schema:description Aims/hypothesisType 2 diabetes mellitus is a complex genetic disease, which results from interactions between multiple genes and environmental factors without any single factor having strong independent effects. This study was done to identify gene to gene interactions which could be associated with the risk of Type 2 diabetes.MethodsWe genotyped 23 different loci in the 15 candidate genes of Type 2 diabetes in 504 unrelated Type 2 diabetic patients and 133 non-diabetic control subjects. We analysed gene to gene interactions among 23 polymorphic loci using the multifactor-dimensionality reduction (MDR) method, which has been shown to be effective for detecting and characterising gene to gene interactions in case-control studies with relatively small samples.ResultsThe MDR analysis showed a significant gene to gene interaction between the Ala55Val polymorphism in the uncoupling protein 2 gene (UCP2) and the 161C>T polymorphism in the exon 6 of peroxisome proliferator-activated receptor γ (PPARγ) gene. This interaction showed the maximum consistency and minimum prediction error among all gene to gene interaction models evaluated. Moreover, the combination of the UCP2 55 Ala/Val heterozygote and the PPARγ 161 C/C homozygote was associated with a reduced risk of Type 2 diabetes (odds ratio: 0.51, 95% CI: 0.34 to 0.77, p=0.0016).Conclusions/interpretationUsing the MDR method, we showed a two-locus interaction between the UCP2 and PPARγ genes among 23 loci in the candidate genes of Type 2 diabetes. The determination of such genotype combinations contributing to Type 2 diabetes mellitus could provide a new tool for identifying high-risk individuals.
26 schema:genre article
27 schema:isAccessibleForFree true
28 schema:isPartOf N3fccd934afe24ba2913c4aac3a03d573
29 Nc89f35ae07ca420a990e6c633346080a
30 sg:journal.1001482
31 schema:keywords Aims/hypothesisType 2 diabetes mellitus
32 Ala55Val polymorphism
33 C homozygotes
34 Conclusions/
35 MDR analysis
36 MDR method
37 MethodsWe
38 PPARγ gene
39 T polymorphism
40 UCP2
41 analysis
42 candidate genes
43 case-control study
44 combination
45 complex genetic diseases
46 consistency
47 control subjects
48 determination
49 diabetes
50 diabetes mellitus
51 diabetic patients
52 different loci
53 disease
54 effect
55 environmental factors
56 error
57 exon 6
58 factors
59 gene interaction model
60 gene interactions
61 genes
62 genetic diseases
63 genotype combinations
64 heterozygotes
65 high-risk individuals
66 homozygotes
67 independent effects
68 individuals
69 interaction
70 interaction model
71 loci
72 maximum consistency
73 mellitus
74 method
75 minimum prediction error
76 model
77 multifactor dimensionality reduction
78 multifactor dimensionality reduction method
79 multiple genes
80 new tool
81 non-diabetic control subjects
82 patients
83 peroxisome proliferator-activated receptor γ gene
84 polymorphic loci
85 polymorphism
86 prediction error
87 protein 2 gene
88 receptor γ gene
89 reduction
90 reduction method
91 risk
92 samples
93 significant genes
94 single factor
95 small samples
96 strong independent effect
97 study
98 subjects
99 tool
100 two-locus interactions
101 type 2 diabetes
102 type 2 diabetes mellitus
103 type 2 diabetic patients
104 unrelated type 2 diabetic patients
105 γ gene
106 schema:name Multifactor-dimensionality reduction shows a two-locus interaction associated with Type 2 diabetes mellitus
107 schema:pagination 549-554
108 schema:productId N2d6208be76e14cbfb20fe77a09562391
109 N35fb21bdd275419588f2f2ed05797052
110 N8fa6640149c44ea1b2409cef25d89bd4
111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049795039
112 https://doi.org/10.1007/s00125-003-1321-3
113 schema:sdDatePublished 2022-09-02T15:50
114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
115 schema:sdPublisher Na7cd72e09ca24b66ae550f284df1bf71
116 schema:url https://doi.org/10.1007/s00125-003-1321-3
117 sgo:license sg:explorer/license/
118 sgo:sdDataset articles
119 rdf:type schema:ScholarlyArticle
120 N1077d4a887964d159f07cc494e0a1e74 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Male
122 rdf:type schema:DefinedTerm
123 N10fb515ae0ba4f69b0dd8b148abcb978 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Mitochondrial Proteins
125 rdf:type schema:DefinedTerm
126 N1373a19e09324aa5b55dd2f661bbb36e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Amino Acid Substitution
128 rdf:type schema:DefinedTerm
129 N199ba313f167475ebc8d021734329545 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Membrane Transport Proteins
131 rdf:type schema:DefinedTerm
132 N2ab716e5365041e398030ae20d02606e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Models, Genetic
134 rdf:type schema:DefinedTerm
135 N2d6208be76e14cbfb20fe77a09562391 schema:name dimensions_id
136 schema:value pub.1049795039
137 rdf:type schema:PropertyValue
138 N3008e099174f40d5833332e31e3431a4 rdf:first sg:person.012615431577.05
139 rdf:rest N9e9d4a5b54a149c79634868c756eda38
140 N35fb21bdd275419588f2f2ed05797052 schema:name doi
141 schema:value 10.1007/s00125-003-1321-3
142 rdf:type schema:PropertyValue
143 N3fccd934afe24ba2913c4aac3a03d573 schema:volumeNumber 47
144 rdf:type schema:PublicationVolume
145 N43edcc0e4d7445d1aef9ab8d213d5066 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name PPAR gamma
147 rdf:type schema:DefinedTerm
148 N446222344a974587b4dae3084cb5e6f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Female
150 rdf:type schema:DefinedTerm
151 N5290dc5051d84d88945c39c2d5e8ebd9 rdf:first sg:person.01101077522.37
152 rdf:rest Ne8eda57ed353437c9cca19713c331924
153 N5801de41c2ad4efdb5f7f8a9ea26d323 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Ion Channels
155 rdf:type schema:DefinedTerm
156 N59978eccbe114f2ba286bc9192501752 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Chromosome Mapping
158 rdf:type schema:DefinedTerm
159 N607c91f7c8aa47089ab1664e1331fe01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Middle Aged
161 rdf:type schema:DefinedTerm
162 N6530456effee4d799910be17d715341e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Humans
164 rdf:type schema:DefinedTerm
165 N77279150b40a479c9ec5f0ee1e2c855d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Aged
167 rdf:type schema:DefinedTerm
168 N79f99dc01bda452fb87eb0e8cab47979 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Diabetes Mellitus, Type 2
170 rdf:type schema:DefinedTerm
171 N86d9b318f174443f8c3352ab03b758ad rdf:first sg:person.01036122220.21
172 rdf:rest N3008e099174f40d5833332e31e3431a4
173 N8fa6640149c44ea1b2409cef25d89bd4 schema:name pubmed_id
174 schema:value 14730379
175 rdf:type schema:PropertyValue
176 N9d7c5c7c8f664fb4b574693f43864483 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Polymorphism, Genetic
178 rdf:type schema:DefinedTerm
179 N9e9d4a5b54a149c79634868c756eda38 rdf:first sg:person.0664736027.44
180 rdf:rest Nd6d82407f0074772a18f4cd51def0cb1
181 Na7cd72e09ca24b66ae550f284df1bf71 schema:name Springer Nature - SN SciGraph project
182 rdf:type schema:Organization
183 Nba928bc9a857404a8f479417af3e576b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Uncoupling Protein 2
185 rdf:type schema:DefinedTerm
186 Nc89f35ae07ca420a990e6c633346080a schema:issueNumber 3
187 rdf:type schema:PublicationIssue
188 Ncb0a70f81bdc458881fe247e6e8ac77b rdf:first sg:person.014104715634.26
189 rdf:rest N86d9b318f174443f8c3352ab03b758ad
190 Nd6d82407f0074772a18f4cd51def0cb1 rdf:first sg:person.012755355137.17
191 rdf:rest rdf:nil
192 Ne8eda57ed353437c9cca19713c331924 rdf:first sg:person.07517464062.70
193 rdf:rest Ncb0a70f81bdc458881fe247e6e8ac77b
194 Ne980af802da541329dacae03b9b5a28e rdf:first sg:person.012016565667.86
195 rdf:rest N5290dc5051d84d88945c39c2d5e8ebd9
196 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
197 schema:name Medical and Health Sciences
198 rdf:type schema:DefinedTerm
199 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
200 schema:name Clinical Sciences
201 rdf:type schema:DefinedTerm
202 sg:journal.1001482 schema:issn 0012-186X
203 1432-0428
204 schema:name Diabetologia
205 schema:publisher Springer Nature
206 rdf:type schema:Periodical
207 sg:person.01036122220.21 schema:affiliation grid-institutes:grid.267370.7
208 schema:familyName Lee
209 schema:givenName K.-U.
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036122220.21
211 rdf:type schema:Person
212 sg:person.01101077522.37 schema:affiliation grid-institutes:grid.152326.1
213 schema:familyName Ritchie
214 schema:givenName M. D.
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101077522.37
216 rdf:type schema:Person
217 sg:person.012016565667.86 schema:affiliation grid-institutes:grid.412484.f
218 schema:familyName Cho
219 schema:givenName Y. M.
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012016565667.86
221 rdf:type schema:Person
222 sg:person.012615431577.05 schema:affiliation grid-institutes:grid.452424.1
223 schema:familyName Shin
224 schema:givenName H. D.
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012615431577.05
226 rdf:type schema:Person
227 sg:person.012755355137.17 schema:affiliation grid-institutes:grid.412484.f
228 schema:familyName Park
229 schema:givenName K. S.
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012755355137.17
231 rdf:type schema:Person
232 sg:person.014104715634.26 schema:affiliation grid-institutes:grid.267370.7
233 schema:familyName Park
234 schema:givenName J. Y.
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014104715634.26
236 rdf:type schema:Person
237 sg:person.0664736027.44 schema:affiliation grid-institutes:grid.31501.36
238 schema:familyName Lee
239 schema:givenName H. K.
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664736027.44
241 rdf:type schema:Person
242 sg:person.07517464062.70 schema:affiliation grid-institutes:grid.152326.1
243 schema:familyName Moore
244 schema:givenName J. H.
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07517464062.70
246 rdf:type schema:Person
247 sg:pub.10.1007/s001250100596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049861008
248 https://doi.org/10.1007/s001250100596
249 rdf:type schema:CreativeWork
250 sg:pub.10.1038/6002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023123823
251 https://doi.org/10.1038/6002
252 rdf:type schema:CreativeWork
253 sg:pub.10.1038/79876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050773546
254 https://doi.org/10.1038/79876
255 rdf:type schema:CreativeWork
256 sg:pub.10.1038/sj.ijo.0801194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002563028
257 https://doi.org/10.1038/sj.ijo.0801194
258 rdf:type schema:CreativeWork
259 grid-institutes:grid.152326.1 schema:alternateName Program in Human Genetics and Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee, USA
260 schema:name Program in Human Genetics and Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee, USA
261 rdf:type schema:Organization
262 grid-institutes:grid.267370.7 schema:alternateName Department of Internal Medicine, University of Ulsan School of Medicine, Seoul, Korea
263 schema:name Department of Internal Medicine, University of Ulsan School of Medicine, Seoul, Korea
264 rdf:type schema:Organization
265 grid-institutes:grid.31501.36 schema:alternateName Department of Internal Medicine, Seoul National University College of Medicine, 28 Yongon-Dong Chongno-Gu, 110-744, Seoul, Korea
266 schema:name Department of Internal Medicine, Seoul National University College of Medicine, 28 Yongon-Dong Chongno-Gu, 110-744, Seoul, Korea
267 rdf:type schema:Organization
268 grid-institutes:grid.412484.f schema:alternateName Genome Research Center for Diabetes and Endocrine Disease, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
269 schema:name Department of Internal Medicine, Seoul National University College of Medicine, 28 Yongon-Dong Chongno-Gu, 110-744, Seoul, Korea
270 Genome Research Center for Diabetes and Endocrine Disease, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
271 rdf:type schema:Organization
272 grid-institutes:grid.452424.1 schema:alternateName Department of Genetic Epidemiology, SNP Genetics, Seoul, Korea
273 schema:name Department of Genetic Epidemiology, SNP Genetics, Seoul, Korea
274 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...