Ontology type: schema:ScholarlyArticle
1998-08
AUTHORSM. Jean, G. G. Brown, B. S. Landry
ABSTRACTWe have used two targeting approaches [pairs of nearly isogenic lines (NILs) and bulked segregant analysis] to identify DNA markers linked to the Rfp1 restorer gene for the pol CMS of canola (Brassica napus L.). We were able to target the Rfp1 locus as efficiently by comparing NILs as by bulked segregant analysis, and it was demonstrated in this instance that double-screening strategies could significantly improve the overall targeting efficiency. The chance occurrence of shared homozygosity at specific unlinked chromosomal regions in the bulks was found to limit the efficiency of bulked segregant analysis, while the efficiency of NIL comparison was limited by residual DNA from the donor cultivar at scattered sites throughout the genome of the NILs. More... »
PAGES431-438
http://scigraph.springernature.com/pub.10.1007/s001220050913
DOIhttp://dx.doi.org/10.1007/s001220050913
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1048784103
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Genetics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "McGill University, Biology Department, 1205 ave. Doctor Penfield, Montr\u00e9al, Qu\u00e9bec, Canada, H3A 1B1, CA",
"id": "http://www.grid.ac/institutes/grid.14709.3b",
"name": [
"McGill University, Biology Department, 1205 ave. Doctor Penfield, Montr\u00e9al, Qu\u00e9bec, Canada, H3A 1B1, CA"
],
"type": "Organization"
},
"familyName": "Jean",
"givenName": "M.",
"id": "sg:person.01055201736.70",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055201736.70"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "McGill University, Biology Department, 1205 ave. Doctor Penfield, Montr\u00e9al, Qu\u00e9bec, Canada, H3A 1B1, CA",
"id": "http://www.grid.ac/institutes/grid.14709.3b",
"name": [
"McGill University, Biology Department, 1205 ave. Doctor Penfield, Montr\u00e9al, Qu\u00e9bec, Canada, H3A 1B1, CA"
],
"type": "Organization"
},
"familyName": "Brown",
"givenName": "G. G.",
"id": "sg:person.01041003047.82",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041003047.82"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "DNA LandMarks, P.O. Box 6, St-Jean-sur-Richelieu, Qu\u00e9bec, Canada, J3B 6Z1, CA",
"id": "http://www.grid.ac/institutes/None",
"name": [
"DNA LandMarks, P.O. Box 6, St-Jean-sur-Richelieu, Qu\u00e9bec, Canada, J3B 6Z1, CA"
],
"type": "Organization"
},
"familyName": "Landry",
"givenName": "B. S.",
"id": "sg:person.01077065520.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077065520.43"
],
"type": "Person"
}
],
"datePublished": "1998-08",
"datePublishedReg": "1998-08-01",
"description": "Abstract\u2002We have used two targeting approaches [pairs of nearly isogenic lines (NILs) and bulked segregant analysis] to identify DNA markers linked to the Rfp1 restorer gene for the pol CMS of canola (Brassica napus L.). We were able to target the Rfp1 locus as efficiently by comparing NILs as by bulked segregant analysis, and it was demonstrated in this instance that double-screening strategies could significantly improve the overall targeting efficiency. The chance occurrence of shared homozygosity at specific unlinked chromosomal regions in the bulks was found to limit the efficiency of bulked segregant analysis, while the efficiency of NIL comparison was limited by residual DNA from the donor cultivar at scattered sites throughout the genome of the NILs.",
"genre": "article",
"id": "sg:pub.10.1007/s001220050913",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1135804",
"issn": [
"0040-5752",
"1432-2242"
],
"name": "Theoretical and Applied Genetics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "97"
}
],
"keywords": [
"residual DNA",
"unlinked chromosomal regions",
"efficiency",
"restorer gene",
"segregant analysis",
"DNA markers",
"pol CMS",
"chromosomal regions",
"DNA",
"donor cultivar",
"Polima",
"bulk",
"approach",
"genes",
"canola",
"strategies",
"genome",
"mapping approach",
"NILs",
"loci",
"markers",
"cultivars",
"analysis",
"homozygosity",
"comparison",
"chance occurrence",
"sites",
"nil",
"region",
"instances",
"CMS",
"occurrence"
],
"name": "Targeted mapping approaches to identify DNA markers linked to the Rfp1 restorer gene for the \u2018Polima\u2019 CMS of canola (Brassica napus L.)",
"pagination": "431-438",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1048784103"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s001220050913"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s001220050913",
"https://app.dimensions.ai/details/publication/pub.1048784103"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:20",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_273.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s001220050913"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s001220050913'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s001220050913'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s001220050913'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s001220050913'
This table displays all metadata directly associated to this object as RDF triples.
107 TRIPLES
21 PREDICATES
58 URIs
50 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s001220050913 | schema:about | anzsrc-for:06 |
2 | ″ | ″ | anzsrc-for:0604 |
3 | ″ | schema:author | N40549c8fcace4ebe989c3928a7d99f31 |
4 | ″ | schema:datePublished | 1998-08 |
5 | ″ | schema:datePublishedReg | 1998-08-01 |
6 | ″ | schema:description | Abstract We have used two targeting approaches [pairs of nearly isogenic lines (NILs) and bulked segregant analysis] to identify DNA markers linked to the Rfp1 restorer gene for the pol CMS of canola (Brassica napus L.). We were able to target the Rfp1 locus as efficiently by comparing NILs as by bulked segregant analysis, and it was demonstrated in this instance that double-screening strategies could significantly improve the overall targeting efficiency. The chance occurrence of shared homozygosity at specific unlinked chromosomal regions in the bulks was found to limit the efficiency of bulked segregant analysis, while the efficiency of NIL comparison was limited by residual DNA from the donor cultivar at scattered sites throughout the genome of the NILs. |
7 | ″ | schema:genre | article |
8 | ″ | schema:inLanguage | en |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | N27491e2c8f7a4500b17e763ce5ba2ba8 |
11 | ″ | ″ | N743081aa2d724c79a2557f072583d853 |
12 | ″ | ″ | sg:journal.1135804 |
13 | ″ | schema:keywords | CMS |
14 | ″ | ″ | DNA |
15 | ″ | ″ | DNA markers |
16 | ″ | ″ | NILs |
17 | ″ | ″ | Polima |
18 | ″ | ″ | analysis |
19 | ″ | ″ | approach |
20 | ″ | ″ | bulk |
21 | ″ | ″ | canola |
22 | ″ | ″ | chance occurrence |
23 | ″ | ″ | chromosomal regions |
24 | ″ | ″ | comparison |
25 | ″ | ″ | cultivars |
26 | ″ | ″ | donor cultivar |
27 | ″ | ″ | efficiency |
28 | ″ | ″ | genes |
29 | ″ | ″ | genome |
30 | ″ | ″ | homozygosity |
31 | ″ | ″ | instances |
32 | ″ | ″ | loci |
33 | ″ | ″ | mapping approach |
34 | ″ | ″ | markers |
35 | ″ | ″ | nil |
36 | ″ | ″ | occurrence |
37 | ″ | ″ | pol CMS |
38 | ″ | ″ | region |
39 | ″ | ″ | residual DNA |
40 | ″ | ″ | restorer gene |
41 | ″ | ″ | segregant analysis |
42 | ″ | ″ | sites |
43 | ″ | ″ | strategies |
44 | ″ | ″ | unlinked chromosomal regions |
45 | ″ | schema:name | Targeted mapping approaches to identify DNA markers linked to the Rfp1 restorer gene for the ‘Polima’ CMS of canola (Brassica napus L.) |
46 | ″ | schema:pagination | 431-438 |
47 | ″ | schema:productId | Nd1cfb9955d3e4b1993a5ceaa8053e5e5 |
48 | ″ | ″ | Nd6215126bb8a437f976dc1c23d99812c |
49 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1048784103 |
50 | ″ | ″ | https://doi.org/10.1007/s001220050913 |
51 | ″ | schema:sdDatePublished | 2022-05-20T07:20 |
52 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
53 | ″ | schema:sdPublisher | N3d8f4e6937484745ab6774395d693f14 |
54 | ″ | schema:url | https://doi.org/10.1007/s001220050913 |
55 | ″ | sgo:license | sg:explorer/license/ |
56 | ″ | sgo:sdDataset | articles |
57 | ″ | rdf:type | schema:ScholarlyArticle |
58 | N27491e2c8f7a4500b17e763ce5ba2ba8 | schema:volumeNumber | 97 |
59 | ″ | rdf:type | schema:PublicationVolume |
60 | N3d8f4e6937484745ab6774395d693f14 | schema:name | Springer Nature - SN SciGraph project |
61 | ″ | rdf:type | schema:Organization |
62 | N40549c8fcace4ebe989c3928a7d99f31 | rdf:first | sg:person.01055201736.70 |
63 | ″ | rdf:rest | N48f35d69b903447fbf9c7f79f9392998 |
64 | N48f35d69b903447fbf9c7f79f9392998 | rdf:first | sg:person.01041003047.82 |
65 | ″ | rdf:rest | Nad7a719700124a39b78855b980ac60d3 |
66 | N743081aa2d724c79a2557f072583d853 | schema:issueNumber | 3 |
67 | ″ | rdf:type | schema:PublicationIssue |
68 | Nad7a719700124a39b78855b980ac60d3 | rdf:first | sg:person.01077065520.43 |
69 | ″ | rdf:rest | rdf:nil |
70 | Nd1cfb9955d3e4b1993a5ceaa8053e5e5 | schema:name | doi |
71 | ″ | schema:value | 10.1007/s001220050913 |
72 | ″ | rdf:type | schema:PropertyValue |
73 | Nd6215126bb8a437f976dc1c23d99812c | schema:name | dimensions_id |
74 | ″ | schema:value | pub.1048784103 |
75 | ″ | rdf:type | schema:PropertyValue |
76 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
77 | ″ | schema:name | Biological Sciences |
78 | ″ | rdf:type | schema:DefinedTerm |
79 | anzsrc-for:0604 | schema:inDefinedTermSet | anzsrc-for: |
80 | ″ | schema:name | Genetics |
81 | ″ | rdf:type | schema:DefinedTerm |
82 | sg:journal.1135804 | schema:issn | 0040-5752 |
83 | ″ | ″ | 1432-2242 |
84 | ″ | schema:name | Theoretical and Applied Genetics |
85 | ″ | schema:publisher | Springer Nature |
86 | ″ | rdf:type | schema:Periodical |
87 | sg:person.01041003047.82 | schema:affiliation | grid-institutes:grid.14709.3b |
88 | ″ | schema:familyName | Brown |
89 | ″ | schema:givenName | G. G. |
90 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041003047.82 |
91 | ″ | rdf:type | schema:Person |
92 | sg:person.01055201736.70 | schema:affiliation | grid-institutes:grid.14709.3b |
93 | ″ | schema:familyName | Jean |
94 | ″ | schema:givenName | M. |
95 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055201736.70 |
96 | ″ | rdf:type | schema:Person |
97 | sg:person.01077065520.43 | schema:affiliation | grid-institutes:None |
98 | ″ | schema:familyName | Landry |
99 | ″ | schema:givenName | B. S. |
100 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077065520.43 |
101 | ″ | rdf:type | schema:Person |
102 | grid-institutes:None | schema:alternateName | DNA LandMarks, P.O. Box 6, St-Jean-sur-Richelieu, Québec, Canada, J3B 6Z1, CA |
103 | ″ | schema:name | DNA LandMarks, P.O. Box 6, St-Jean-sur-Richelieu, Québec, Canada, J3B 6Z1, CA |
104 | ″ | rdf:type | schema:Organization |
105 | grid-institutes:grid.14709.3b | schema:alternateName | McGill University, Biology Department, 1205 ave. Doctor Penfield, Montréal, Québec, Canada, H3A 1B1, CA |
106 | ″ | schema:name | McGill University, Biology Department, 1205 ave. Doctor Penfield, Montréal, Québec, Canada, H3A 1B1, CA |
107 | ″ | rdf:type | schema:Organization |