CLAVATA signaling pathway genes modulating flowering time and flower number in chickpea View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-30

AUTHORS

Udita Basu, Laxmi Narnoliya, Rishi Srivastava, Akash Sharma, Deepak Bajaj, Anurag Daware, Virevol Thakro, Naveen Malik, Hari D. Upadhyaya, Shailesh Tripathi, V. S. Hegde, Akhilesh K. Tyagi, Swarup K. Parida

ABSTRACT

KEY MESSAGE: A combinatorial genomic strategy delineated functionally relevant natural allele of a CLAVATA gene and its marker (haplotype)-assisted introgression led to development of the early-flowering chickpea cultivars with high flower number and enhanced yield/productivity. Unraveling the genetic components involved in CLAVATA (CLV) signaling is crucial for modulating important shoot apical meristem (SAM) characteristics and ultimately regulating diverse SAM-regulated agromorphological traits in crop plants. A genome-wide scan identified 142 CLV1-, 28 CLV2- and 6 CLV3-like genes, and their comprehensive genomic constitution and phylogenetic relationships were deciphered in chickpea. The QTL/fine mapping and map-based cloning integrated with high-resolution association analysis identified SNP loci from CaCLV3_01 gene within a major CaqDTF1.1/CaqFN1.1 QTL associated with DTF (days to 50% flowering) and FN (flower number) traits in chickpea, which was further ascertained by quantitative expression profiling. Molecular haplotyping of CaCLV3_01 gene, expressed specifically in SAM, constituted two major haplotypes that differentiated the early-DTF and high-FN chickpea accessions from late-DTF and low-FN. Enhanced accumulation of transcripts of superior CaCLV3_01 gene haplotype and known flowering promoting genes was observed in the corresponding haplotype-introgressed early-DTF and high-FN near-isogenic lines (NILs) with narrow SAM width. The superior haplotype-introgressed NILs exhibited early-flowering, high-FN and enhanced seed yield/productivity without compromising agronomic performance. These delineated molecular signatures can regulate DTF and FN traits through SAM proliferation and differentiation and thereby will be useful for translational genomic study to develop early-flowering cultivars with enhanced yield/productivity. More... »

PAGES

1-22

References to SciGraph publications

  • 2015-11. A genome-scale integrated approach aids in genetic dissection of complex flowering time trait in chickpea in PLANT MOLECULAR BIOLOGY
  • 2016-04. An Efficient LCM-Based Method for Tissue Specific Expression Analysis of Genes and miRNAs in SCIENTIFIC REPORTS
  • 2015-08. Ultra-high density intra-specific genetic linkage maps accelerate identification of functionally relevant molecular tags governing important agronomic traits in chickpea in SCIENTIFIC REPORTS
  • 2016-09. Identification of candidate genes and natural allelic variants for QTLs governing plant height in chickpea in SCIENTIFIC REPORTS
  • 2013-03. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement in NATURE BIOTECHNOLOGY
  • 2015-07. A cascade of arabinosyltransferases controls shoot meristem size in tomato in NATURE GENETICS
  • 2013-03. Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus in NATURE GENETICS
  • 2016-07. Structure, organization and evolution of ADP-ribosylation factors in rice and foxtail millet, and their expression in rice in SCIENTIFIC REPORTS
  • 2015-08. A combinatorial approach of comprehensive QTL-based comparative genome mapping and transcript profiling identified a seed weight-regulating candidate gene in chickpea in SCIENTIFIC REPORTS
  • 2008-12. Bioinformatic analysis of the CLE signaling peptide family in BMC PLANT BIOLOGY
  • 2015-12. Genetic control of morphometric diversity in the maize shoot apical meristem in NATURE COMMUNICATIONS
  • 2015-10. An advanced draft genome assembly of a desi type chickpea (Cicer arietinum L.) in SCIENTIFIC REPORTS
  • 2016-05. Integrated analysis in bi-parental and natural populations reveals CsCLAVATA3 (CsCLV3) underlying carpel number variations in cucumber in THEORETICAL AND APPLIED GENETICS
  • 2017-12. Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness in SCIENTIFIC REPORTS
  • 2016-09. An Integrated Genomic Strategy Delineates Candidate Mediator Genes Regulating Grain Size and Weight in Rice in SCIENTIFIC REPORTS
  • 2015-09. A genome-wide SNP scan accelerates trait-regulatory genomic loci identification in chickpea in SCIENTIFIC REPORTS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00122-019-03335-y

    DOI

    http://dx.doi.org/10.1007/s00122-019-03335-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113143834

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30929032


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Institute of Plant Genome Research", 
              "id": "https://www.grid.ac/institutes/grid.419632.b", 
              "name": [
                "National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, 110067, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Basu", 
            "givenName": "Udita", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute of Plant Genome Research", 
              "id": "https://www.grid.ac/institutes/grid.419632.b", 
              "name": [
                "National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, 110067, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Narnoliya", 
            "givenName": "Laxmi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute of Plant Genome Research", 
              "id": "https://www.grid.ac/institutes/grid.419632.b", 
              "name": [
                "National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, 110067, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Srivastava", 
            "givenName": "Rishi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute of Plant Genome Research", 
              "id": "https://www.grid.ac/institutes/grid.419632.b", 
              "name": [
                "National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, 110067, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sharma", 
            "givenName": "Akash", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute of Plant Genome Research", 
              "id": "https://www.grid.ac/institutes/grid.419632.b", 
              "name": [
                "National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, 110067, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bajaj", 
            "givenName": "Deepak", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute of Plant Genome Research", 
              "id": "https://www.grid.ac/institutes/grid.419632.b", 
              "name": [
                "National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, 110067, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Daware", 
            "givenName": "Anurag", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute of Plant Genome Research", 
              "id": "https://www.grid.ac/institutes/grid.419632.b", 
              "name": [
                "National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, 110067, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Thakro", 
            "givenName": "Virevol", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute of Plant Genome Research", 
              "id": "https://www.grid.ac/institutes/grid.419632.b", 
              "name": [
                "National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, 110067, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Malik", 
            "givenName": "Naveen", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "International Crops Research Institute for the Semi-Arid Tropics", 
              "id": "https://www.grid.ac/institutes/grid.419337.b", 
              "name": [
                "International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), 502324, Patancheru, Telangana, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Upadhyaya", 
            "givenName": "Hari D.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Indian Agricultural Research Institute", 
              "id": "https://www.grid.ac/institutes/grid.418196.3", 
              "name": [
                "Division of Genetics, Indian Agricultural Research Institute (IARI), 110012, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tripathi", 
            "givenName": "Shailesh", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Indian Agricultural Research Institute", 
              "id": "https://www.grid.ac/institutes/grid.418196.3", 
              "name": [
                "Division of Genetics, Indian Agricultural Research Institute (IARI), 110012, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hegde", 
            "givenName": "V. S.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Delhi", 
              "id": "https://www.grid.ac/institutes/grid.8195.5", 
              "name": [
                "National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, 110067, New Delhi, India", 
                "Department of Plant Molecular Biology, University of Delhi, 110021, South Campus, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tyagi", 
            "givenName": "Akhilesh K.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute of Plant Genome Research", 
              "id": "https://www.grid.ac/institutes/grid.419632.b", 
              "name": [
                "National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, 110067, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Parida", 
            "givenName": "Swarup K.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.3389/fpls.2015.01218", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003273842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep09468", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003433664", 
              "https://doi.org/10.1038/srep09468"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep09264", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005411641", 
              "https://doi.org/10.1038/srep09264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-313x.2005.02592.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006091430"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biotechadv.2013.01.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006687786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/jipb.12129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007050673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1104/pp.126.3.939", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008967110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0049836", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009431581"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jxb/eru478", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009706503"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0092-8674(00)80239-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010751872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep21577", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011750804", 
              "https://doi.org/10.1038/srep21577"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0063551", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012039376"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jxb/erv351", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013857512"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1105/tpc.107.057547", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015861091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1242/dev.133645", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017730487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11103-015-0377-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018389859", 
              "https://doi.org/10.1007/s11103-015-0377-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gad.208501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019608187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms9974", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020547385", 
              "https://doi.org/10.1038/ncomms9974"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/dnares/dsu031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020897319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2491", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020897701", 
              "https://doi.org/10.1038/nbt.2491"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-016-2679-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022706230", 
              "https://doi.org/10.1007/s00122-016-2679-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1105/tpc.11.10.1925", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022797757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1242/dev.01441", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022892321"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/tcr.20091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023534769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/pbi.12059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025602984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2229-8-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025836498", 
              "https://doi.org/10.1186/1471-2229-8-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-313x.2012.04934.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027261503"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/dnares/dsw042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030261463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0107484", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033037130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0107484", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033037130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1105/tpc.11.3.393", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034790407"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jhered/93.1.77", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035613632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3309", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035690003", 
              "https://doi.org/10.1038/ng.3309"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bts444", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036147444"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fpls.2015.00162", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036373457"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep12806", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037089192", 
              "https://doi.org/10.1038/srep12806"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jxb/erq426", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037554889"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep11166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037828631", 
              "https://doi.org/10.1038/srep11166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.pbi.2014.09.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038505454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep24008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038927915", 
              "https://doi.org/10.1038/srep24008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039648116", 
              "https://doi.org/10.1038/ng.2534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep23253", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041444289", 
              "https://doi.org/10.1038/srep23253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.plantsci.2016.01.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041450189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0125408", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044492904"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/tpj.12173", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044616594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.104.033357", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045313898"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.104.033357", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045313898"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.111.130930", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047288401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.111.130930", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047288401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cub.2009.03.060", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049351835"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0092-8674(00)80700-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049355759"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1744-7909.2005.00017.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050251660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1744-7909.2005.00017.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050251660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep27968", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051233304", 
              "https://doi.org/10.1038/srep27968"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/mp/sss060", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051913761"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-016-0028-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079403223", 
              "https://doi.org/10.1038/s41598-016-0028-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082739773", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082861695", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1104/pp.17.00082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091249015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cub.2018.05.068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105711075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.2517-6161.1995.tb02031.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110458929"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.2517-6161.1995.tb02031.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110458929"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/tpj.14284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112085645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/tpj.14284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112085645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/tpj.14284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112085645"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-30", 
        "datePublishedReg": "2019-03-30", 
        "description": "KEY MESSAGE: A combinatorial genomic strategy delineated functionally relevant natural allele of a CLAVATA gene and its marker (haplotype)-assisted introgression led to development of the early-flowering chickpea cultivars with high flower number and enhanced yield/productivity. Unraveling the genetic components involved in CLAVATA (CLV) signaling is crucial for modulating important shoot apical meristem (SAM) characteristics and ultimately regulating diverse SAM-regulated agromorphological traits in crop plants. A genome-wide scan identified 142 CLV1-, 28 CLV2- and 6 CLV3-like genes, and their comprehensive genomic constitution and phylogenetic relationships were deciphered in chickpea. The QTL/fine mapping and map-based cloning integrated with high-resolution association analysis identified SNP loci from CaCLV3_01 gene within a major CaqDTF1.1/CaqFN1.1 QTL associated with DTF (days to 50% flowering) and FN (flower number) traits in chickpea, which was further ascertained by quantitative expression profiling. Molecular haplotyping of CaCLV3_01 gene, expressed specifically in SAM, constituted two major haplotypes that differentiated the early-DTF and high-FN chickpea accessions from late-DTF and low-FN. Enhanced accumulation of transcripts of superior CaCLV3_01 gene haplotype and known flowering promoting genes was observed in the corresponding haplotype-introgressed early-DTF and high-FN near-isogenic lines (NILs) with narrow SAM width. The superior haplotype-introgressed NILs exhibited early-flowering, high-FN and enhanced seed yield/productivity without compromising agronomic performance. These delineated molecular signatures can regulate DTF and FN traits through SAM proliferation and differentiation and thereby will be useful for translational genomic study to develop early-flowering cultivars with enhanced yield/productivity.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00122-019-03335-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1135804", 
            "issn": [
              "0040-5752", 
              "1432-2242"
            ], 
            "name": "Theoretical and Applied Genetics", 
            "type": "Periodical"
          }
        ], 
        "name": "CLAVATA signaling pathway genes modulating flowering time and flower number in chickpea", 
        "pagination": "1-22", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c826445dd075f50837b172cda33e775a66758202067ddfa3802fe733dc27adc1"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30929032"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0145600"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00122-019-03335-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113143834"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00122-019-03335-y", 
          "https://app.dimensions.ai/details/publication/pub.1113143834"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46765_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00122-019-03335-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00122-019-03335-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00122-019-03335-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00122-019-03335-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00122-019-03335-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    332 TRIPLES      21 PREDICATES      84 URIs      18 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00122-019-03335-y schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author N4e34e9a52cb14a7082b484965ee8213b
    4 schema:citation sg:pub.10.1007/s00122-016-2679-1
    5 sg:pub.10.1007/s11103-015-0377-z
    6 sg:pub.10.1038/nbt.2491
    7 sg:pub.10.1038/ncomms9974
    8 sg:pub.10.1038/ng.2534
    9 sg:pub.10.1038/ng.3309
    10 sg:pub.10.1038/s41598-016-0028-x
    11 sg:pub.10.1038/srep09264
    12 sg:pub.10.1038/srep09468
    13 sg:pub.10.1038/srep11166
    14 sg:pub.10.1038/srep12806
    15 sg:pub.10.1038/srep21577
    16 sg:pub.10.1038/srep23253
    17 sg:pub.10.1038/srep24008
    18 sg:pub.10.1038/srep27968
    19 sg:pub.10.1186/1471-2229-8-1
    20 https://app.dimensions.ai/details/publication/pub.1082739773
    21 https://app.dimensions.ai/details/publication/pub.1082861695
    22 https://doi.org/10.1002/tcr.20091
    23 https://doi.org/10.1016/j.biotechadv.2013.01.001
    24 https://doi.org/10.1016/j.cub.2009.03.060
    25 https://doi.org/10.1016/j.cub.2018.05.068
    26 https://doi.org/10.1016/j.pbi.2014.09.013
    27 https://doi.org/10.1016/j.plantsci.2016.01.004
    28 https://doi.org/10.1016/s0092-8674(00)80239-1
    29 https://doi.org/10.1016/s0092-8674(00)80700-x
    30 https://doi.org/10.1093/bioinformatics/bts444
    31 https://doi.org/10.1093/dnares/dsu031
    32 https://doi.org/10.1093/dnares/dsw042
    33 https://doi.org/10.1093/jhered/93.1.77
    34 https://doi.org/10.1093/jxb/erq426
    35 https://doi.org/10.1093/jxb/eru478
    36 https://doi.org/10.1093/jxb/erv351
    37 https://doi.org/10.1093/mp/sss060
    38 https://doi.org/10.1101/gad.208501
    39 https://doi.org/10.1104/pp.126.3.939
    40 https://doi.org/10.1104/pp.17.00082
    41 https://doi.org/10.1105/tpc.107.057547
    42 https://doi.org/10.1105/tpc.11.10.1925
    43 https://doi.org/10.1105/tpc.11.3.393
    44 https://doi.org/10.1111/j.1365-313x.2005.02592.x
    45 https://doi.org/10.1111/j.1365-313x.2012.04934.x
    46 https://doi.org/10.1111/j.1744-7909.2005.00017.x
    47 https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
    48 https://doi.org/10.1111/jipb.12129
    49 https://doi.org/10.1111/pbi.12059
    50 https://doi.org/10.1111/tpj.12173
    51 https://doi.org/10.1111/tpj.14284
    52 https://doi.org/10.1242/dev.01441
    53 https://doi.org/10.1242/dev.133645
    54 https://doi.org/10.1371/journal.pone.0049836
    55 https://doi.org/10.1371/journal.pone.0063551
    56 https://doi.org/10.1371/journal.pone.0107484
    57 https://doi.org/10.1371/journal.pone.0125408
    58 https://doi.org/10.1534/genetics.104.033357
    59 https://doi.org/10.1534/genetics.111.130930
    60 https://doi.org/10.3389/fpls.2015.00162
    61 https://doi.org/10.3389/fpls.2015.01218
    62 schema:datePublished 2019-03-30
    63 schema:datePublishedReg 2019-03-30
    64 schema:description KEY MESSAGE: A combinatorial genomic strategy delineated functionally relevant natural allele of a CLAVATA gene and its marker (haplotype)-assisted introgression led to development of the early-flowering chickpea cultivars with high flower number and enhanced yield/productivity. Unraveling the genetic components involved in CLAVATA (CLV) signaling is crucial for modulating important shoot apical meristem (SAM) characteristics and ultimately regulating diverse SAM-regulated agromorphological traits in crop plants. A genome-wide scan identified 142 CLV1-, 28 CLV2- and 6 CLV3-like genes, and their comprehensive genomic constitution and phylogenetic relationships were deciphered in chickpea. The QTL/fine mapping and map-based cloning integrated with high-resolution association analysis identified SNP loci from CaCLV3_01 gene within a major CaqDTF1.1/CaqFN1.1 QTL associated with DTF (days to 50% flowering) and FN (flower number) traits in chickpea, which was further ascertained by quantitative expression profiling. Molecular haplotyping of CaCLV3_01 gene, expressed specifically in SAM, constituted two major haplotypes that differentiated the early-DTF and high-FN chickpea accessions from late-DTF and low-FN. Enhanced accumulation of transcripts of superior CaCLV3_01 gene haplotype and known flowering promoting genes was observed in the corresponding haplotype-introgressed early-DTF and high-FN near-isogenic lines (NILs) with narrow SAM width. The superior haplotype-introgressed NILs exhibited early-flowering, high-FN and enhanced seed yield/productivity without compromising agronomic performance. These delineated molecular signatures can regulate DTF and FN traits through SAM proliferation and differentiation and thereby will be useful for translational genomic study to develop early-flowering cultivars with enhanced yield/productivity.
    65 schema:genre research_article
    66 schema:inLanguage en
    67 schema:isAccessibleForFree false
    68 schema:isPartOf sg:journal.1135804
    69 schema:name CLAVATA signaling pathway genes modulating flowering time and flower number in chickpea
    70 schema:pagination 1-22
    71 schema:productId N64144b42f2e24f10b3da0ab0fd046b8c
    72 Naa71d32ed5664429a02281a2fb4d6aee
    73 Nb71ad00bea654ca18a719272b8072081
    74 Nc76ba7b0cb1f457d8f8c52035f7bce57
    75 Nfac4e0fad5914d6a83de6dea1a31f9a2
    76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113143834
    77 https://doi.org/10.1007/s00122-019-03335-y
    78 schema:sdDatePublished 2019-04-11T13:33
    79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    80 schema:sdPublisher N45771064a6db44a8b914c27c43acfe58
    81 schema:url https://link.springer.com/10.1007%2Fs00122-019-03335-y
    82 sgo:license sg:explorer/license/
    83 sgo:sdDataset articles
    84 rdf:type schema:ScholarlyArticle
    85 N071744f7cad04e0ab4905506dfc88234 rdf:first N0a8a2de46f424376949d611585cc3be2
    86 rdf:rest N309381342f3e4d6aa2d447f8a2bf3f42
    87 N0a8a2de46f424376949d611585cc3be2 schema:affiliation https://www.grid.ac/institutes/grid.419632.b
    88 schema:familyName Narnoliya
    89 schema:givenName Laxmi
    90 rdf:type schema:Person
    91 N16d0f3258ed142c1a05448c1c47a7afe schema:affiliation https://www.grid.ac/institutes/grid.419632.b
    92 schema:familyName Sharma
    93 schema:givenName Akash
    94 rdf:type schema:Person
    95 N27abdd5a264e4174b3661c152fdefdb4 rdf:first N72f017112e294c74a043fa6f37417927
    96 rdf:rest Nae2698a8c5314235bc166bc2f2d0a1d9
    97 N309381342f3e4d6aa2d447f8a2bf3f42 rdf:first Nd20d7f48b275401ba6d856ec32983036
    98 rdf:rest Ne3973841b1c14dd6902cfa36d0a612a0
    99 N368ae3c0d7ac40e3b0f5ba943fa3e6fa schema:affiliation https://www.grid.ac/institutes/grid.418196.3
    100 schema:familyName Hegde
    101 schema:givenName V. S.
    102 rdf:type schema:Person
    103 N434ca6eca15c444ba192d14130fb9c3d schema:affiliation https://www.grid.ac/institutes/grid.8195.5
    104 schema:familyName Tyagi
    105 schema:givenName Akhilesh K.
    106 rdf:type schema:Person
    107 N45771064a6db44a8b914c27c43acfe58 schema:name Springer Nature - SN SciGraph project
    108 rdf:type schema:Organization
    109 N4e34e9a52cb14a7082b484965ee8213b rdf:first N988fdb9bec794165adfc14487a94da41
    110 rdf:rest N071744f7cad04e0ab4905506dfc88234
    111 N5861972e707c455c808b14948657a172 schema:affiliation https://www.grid.ac/institutes/grid.419632.b
    112 schema:familyName Daware
    113 schema:givenName Anurag
    114 rdf:type schema:Person
    115 N5fde31cc09804e889d9b701db840e0d3 rdf:first Nad6e71c17d914f4ab589f1414a87d6ee
    116 rdf:rest N9805b80952374c668b8de4e9c881e01e
    117 N64144b42f2e24f10b3da0ab0fd046b8c schema:name pubmed_id
    118 schema:value 30929032
    119 rdf:type schema:PropertyValue
    120 N67065127611847edb936441bcd624225 schema:affiliation https://www.grid.ac/institutes/grid.419632.b
    121 schema:familyName Parida
    122 schema:givenName Swarup K.
    123 rdf:type schema:Person
    124 N694b9227a9954f42b5b0f9bc47b0047d rdf:first Nd833df3b08f34c81ba9d17a17a90a563
    125 rdf:rest N27abdd5a264e4174b3661c152fdefdb4
    126 N72f017112e294c74a043fa6f37417927 schema:affiliation https://www.grid.ac/institutes/grid.419632.b
    127 schema:familyName Malik
    128 schema:givenName Naveen
    129 rdf:type schema:Person
    130 N7a1b85df4e03452daaf0e496b931f6b8 rdf:first N434ca6eca15c444ba192d14130fb9c3d
    131 rdf:rest N9f807a588d6a4c7e87ab66fb609923b5
    132 N8f08564c98664cef926a29a3c27276ab schema:affiliation https://www.grid.ac/institutes/grid.419337.b
    133 schema:familyName Upadhyaya
    134 schema:givenName Hari D.
    135 rdf:type schema:Person
    136 N9805b80952374c668b8de4e9c881e01e rdf:first N368ae3c0d7ac40e3b0f5ba943fa3e6fa
    137 rdf:rest N7a1b85df4e03452daaf0e496b931f6b8
    138 N988fdb9bec794165adfc14487a94da41 schema:affiliation https://www.grid.ac/institutes/grid.419632.b
    139 schema:familyName Basu
    140 schema:givenName Udita
    141 rdf:type schema:Person
    142 N9f807a588d6a4c7e87ab66fb609923b5 rdf:first N67065127611847edb936441bcd624225
    143 rdf:rest rdf:nil
    144 Naa71d32ed5664429a02281a2fb4d6aee schema:name doi
    145 schema:value 10.1007/s00122-019-03335-y
    146 rdf:type schema:PropertyValue
    147 Nad6e71c17d914f4ab589f1414a87d6ee schema:affiliation https://www.grid.ac/institutes/grid.418196.3
    148 schema:familyName Tripathi
    149 schema:givenName Shailesh
    150 rdf:type schema:Person
    151 Nae2698a8c5314235bc166bc2f2d0a1d9 rdf:first N8f08564c98664cef926a29a3c27276ab
    152 rdf:rest N5fde31cc09804e889d9b701db840e0d3
    153 Nb67e127edf3f4e9c9f4cf21693ba879a rdf:first N5861972e707c455c808b14948657a172
    154 rdf:rest N694b9227a9954f42b5b0f9bc47b0047d
    155 Nb71ad00bea654ca18a719272b8072081 schema:name readcube_id
    156 schema:value c826445dd075f50837b172cda33e775a66758202067ddfa3802fe733dc27adc1
    157 rdf:type schema:PropertyValue
    158 Nc5b5ed7946b444a980926dae067c7ff0 rdf:first Ncdaf6101ab3c4d668aa62aac574fd201
    159 rdf:rest Nb67e127edf3f4e9c9f4cf21693ba879a
    160 Nc76ba7b0cb1f457d8f8c52035f7bce57 schema:name nlm_unique_id
    161 schema:value 0145600
    162 rdf:type schema:PropertyValue
    163 Ncdaf6101ab3c4d668aa62aac574fd201 schema:affiliation https://www.grid.ac/institutes/grid.419632.b
    164 schema:familyName Bajaj
    165 schema:givenName Deepak
    166 rdf:type schema:Person
    167 Nd20d7f48b275401ba6d856ec32983036 schema:affiliation https://www.grid.ac/institutes/grid.419632.b
    168 schema:familyName Srivastava
    169 schema:givenName Rishi
    170 rdf:type schema:Person
    171 Nd833df3b08f34c81ba9d17a17a90a563 schema:affiliation https://www.grid.ac/institutes/grid.419632.b
    172 schema:familyName Thakro
    173 schema:givenName Virevol
    174 rdf:type schema:Person
    175 Ne3973841b1c14dd6902cfa36d0a612a0 rdf:first N16d0f3258ed142c1a05448c1c47a7afe
    176 rdf:rest Nc5b5ed7946b444a980926dae067c7ff0
    177 Nfac4e0fad5914d6a83de6dea1a31f9a2 schema:name dimensions_id
    178 schema:value pub.1113143834
    179 rdf:type schema:PropertyValue
    180 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    181 schema:name Biological Sciences
    182 rdf:type schema:DefinedTerm
    183 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    184 schema:name Genetics
    185 rdf:type schema:DefinedTerm
    186 sg:journal.1135804 schema:issn 0040-5752
    187 1432-2242
    188 schema:name Theoretical and Applied Genetics
    189 rdf:type schema:Periodical
    190 sg:pub.10.1007/s00122-016-2679-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022706230
    191 https://doi.org/10.1007/s00122-016-2679-1
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/s11103-015-0377-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1018389859
    194 https://doi.org/10.1007/s11103-015-0377-z
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/nbt.2491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020897701
    197 https://doi.org/10.1038/nbt.2491
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/ncomms9974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020547385
    200 https://doi.org/10.1038/ncomms9974
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/ng.2534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039648116
    203 https://doi.org/10.1038/ng.2534
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/ng.3309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035690003
    206 https://doi.org/10.1038/ng.3309
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/s41598-016-0028-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1079403223
    209 https://doi.org/10.1038/s41598-016-0028-x
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/srep09264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005411641
    212 https://doi.org/10.1038/srep09264
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/srep09468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003433664
    215 https://doi.org/10.1038/srep09468
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/srep11166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037828631
    218 https://doi.org/10.1038/srep11166
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/srep12806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037089192
    221 https://doi.org/10.1038/srep12806
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/srep21577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011750804
    224 https://doi.org/10.1038/srep21577
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/srep23253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041444289
    227 https://doi.org/10.1038/srep23253
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/srep24008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038927915
    230 https://doi.org/10.1038/srep24008
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/srep27968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051233304
    233 https://doi.org/10.1038/srep27968
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1186/1471-2229-8-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025836498
    236 https://doi.org/10.1186/1471-2229-8-1
    237 rdf:type schema:CreativeWork
    238 https://app.dimensions.ai/details/publication/pub.1082739773 schema:CreativeWork
    239 https://app.dimensions.ai/details/publication/pub.1082861695 schema:CreativeWork
    240 https://doi.org/10.1002/tcr.20091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023534769
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1016/j.biotechadv.2013.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006687786
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1016/j.cub.2009.03.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049351835
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1016/j.cub.2018.05.068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105711075
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1016/j.pbi.2014.09.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038505454
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1016/j.plantsci.2016.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041450189
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1016/s0092-8674(00)80239-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010751872
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1016/s0092-8674(00)80700-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049355759
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1093/bioinformatics/bts444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036147444
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1093/dnares/dsu031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020897319
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1093/dnares/dsw042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030261463
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1093/jhered/93.1.77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035613632
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1093/jxb/erq426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037554889
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1093/jxb/eru478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009706503
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1093/jxb/erv351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013857512
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1093/mp/sss060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051913761
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1101/gad.208501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019608187
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1104/pp.126.3.939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008967110
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1104/pp.17.00082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091249015
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1105/tpc.107.057547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015861091
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1105/tpc.11.10.1925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022797757
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1105/tpc.11.3.393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034790407
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1111/j.1365-313x.2005.02592.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006091430
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1111/j.1365-313x.2012.04934.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027261503
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1111/j.1744-7909.2005.00017.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050251660
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1111/j.2517-6161.1995.tb02031.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110458929
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1111/jipb.12129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007050673
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.1111/pbi.12059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025602984
    295 rdf:type schema:CreativeWork
    296 https://doi.org/10.1111/tpj.12173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044616594
    297 rdf:type schema:CreativeWork
    298 https://doi.org/10.1111/tpj.14284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112085645
    299 rdf:type schema:CreativeWork
    300 https://doi.org/10.1242/dev.01441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022892321
    301 rdf:type schema:CreativeWork
    302 https://doi.org/10.1242/dev.133645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017730487
    303 rdf:type schema:CreativeWork
    304 https://doi.org/10.1371/journal.pone.0049836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009431581
    305 rdf:type schema:CreativeWork
    306 https://doi.org/10.1371/journal.pone.0063551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012039376
    307 rdf:type schema:CreativeWork
    308 https://doi.org/10.1371/journal.pone.0107484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033037130
    309 rdf:type schema:CreativeWork
    310 https://doi.org/10.1371/journal.pone.0125408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044492904
    311 rdf:type schema:CreativeWork
    312 https://doi.org/10.1534/genetics.104.033357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045313898
    313 rdf:type schema:CreativeWork
    314 https://doi.org/10.1534/genetics.111.130930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047288401
    315 rdf:type schema:CreativeWork
    316 https://doi.org/10.3389/fpls.2015.00162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036373457
    317 rdf:type schema:CreativeWork
    318 https://doi.org/10.3389/fpls.2015.01218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003273842
    319 rdf:type schema:CreativeWork
    320 https://www.grid.ac/institutes/grid.418196.3 schema:alternateName Indian Agricultural Research Institute
    321 schema:name Division of Genetics, Indian Agricultural Research Institute (IARI), 110012, New Delhi, India
    322 rdf:type schema:Organization
    323 https://www.grid.ac/institutes/grid.419337.b schema:alternateName International Crops Research Institute for the Semi-Arid Tropics
    324 schema:name International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), 502324, Patancheru, Telangana, India
    325 rdf:type schema:Organization
    326 https://www.grid.ac/institutes/grid.419632.b schema:alternateName National Institute of Plant Genome Research
    327 schema:name National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, 110067, New Delhi, India
    328 rdf:type schema:Organization
    329 https://www.grid.ac/institutes/grid.8195.5 schema:alternateName University of Delhi
    330 schema:name Department of Plant Molecular Biology, University of Delhi, 110021, South Campus, New Delhi, India
    331 National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, 110067, New Delhi, India
    332 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...