Integrating genomic-enabled prediction and high-throughput phenotyping in breeding for climate-resilient bread wheat View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Philomin Juliana, Osval A. Montesinos-López, José Crossa, Suchismita Mondal, Lorena González Pérez, Jesse Poland, Julio Huerta-Espino, Leonardo Crespo-Herrera, Velu Govindan, Susanne Dreisigacker, Sandesh Shrestha, Paulino Pérez-Rodríguez, Francisco Pinto Espinosa, Ravi P. Singh

ABSTRACT

Genomic selection and high-throughput phenotyping (HTP) are promising tools to accelerate breeding gains for high-yielding and climate-resilient wheat varieties. Hence, our objective was to evaluate them for predicting grain yield (GY) in drought-stressed (DS) and late-sown heat-stressed (HS) environments of the International maize and wheat improvement center's elite yield trial nurseries. We observed that the average genomic prediction accuracies using fivefold cross-validations were 0.50 and 0.51 in the DS and HS environments, respectively. However, when a different nursery/year was used to predict another nursery/year, the average genomic prediction accuracies in the DS and HS environments decreased to 0.18 and 0.23, respectively. While genomic predictions clearly outperformed pedigree-based predictions across nurseries, they were similar to pedigree-based predictions within nurseries due to small family sizes. In populations with some full-sibs in the training population, the genomic and pedigree-based prediction accuracies were on average 0.27 and 0.35 higher than the accuracies in populations with only one progeny per cross, indicating the importance of genetic relatedness between the training and validation populations for good predictions. We also evaluated the item-based collaborative filtering approach for multivariate prediction of GY using the green normalized difference vegetation index from HTP. This approach proved to be the best strategy for across-nursery predictions, with average accuracies of 0.56 and 0.62 in the DS and HS environments, respectively. We conclude that GY is a challenging trait for across-year predictions, but GS and HTP can be integrated in increasing the size of populations screened and evaluating unphenotyped large nurseries for stress-resilience within years. More... »

PAGES

177-194

References to SciGraph publications

  • 2004-11. Allelic variation at the VRN-1 promoter region in polyploid wheat in THEORETICAL AND APPLIED GENETICS
  • 2017-12. Accuracies of univariate and multivariate genomic prediction models in African cassava in GENETICS SELECTION EVOLUTION
  • 2015-12. Climate variation explains a third of global crop yield variability in NATURE COMMUNICATIONS
  • 2014-01. Genomic prediction in CIMMYT maize and wheat breeding programs in HEREDITY
  • 1996-01. CIMMYT's approach to breeding for wide adaptation in EUPHYTICA
  • 2016-12. Performance of genomic prediction within and across generations in maritime pine in BMC GENOMICS
  • 2017-08. Optimization of multi-environment trials for genomic selection based on crop models in THEORETICAL AND APPLIED GENETICS
  • 2017-07. Genomic and pedigree-based prediction for leaf, stem, and stripe rust resistance in wheat in THEORETICAL AND APPLIED GENETICS
  • 2017-12. Accelerating wheat breeding for end-use quality with multi-trait genomic predictions incorporating near infrared and nuclear magnetic resonance-derived phenotypes in THEORETICAL AND APPLIED GENETICS
  • 1996-11. Crop responses to drought and the interpretation of adaptation in PLANT GROWTH REGULATION
  • 2007-04. Dissecting gene × environmental effects on wheat yields via QTL and physiological analysis in EUPHYTICA
  • 2015-03. Genetic characterization of the wheat association mapping initiative (WAMI) panel for dissection of complex traits in spring wheat in THEORETICAL AND APPLIED GENETICS
  • 2012-04. Fast gapped-read alignment with Bowtie 2 in NATURE METHODS
  • 2012-12. The importance of information on relatives for the prediction of genomic breeding values and the implications for the makeup of reference data sets in livestock breeding schemes in GENETICS SELECTION EVOLUTION
  • 2015-05. Genomic regions associated with grain yield under drought stress in wheat (Triticum aestivum L.) in EUPHYTICA
  • 2016-12. Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries in PLANT METHODS
  • 2017-08. Genomic prediction ability for yield-related traits in German winter barley elite material in THEORETICAL AND APPLIED GENETICS
  • 2016-12. Similar estimates of temperature impacts on global wheat yield by three independent methods in NATURE CLIMATE CHANGE
  • 2018-03. Efficiency of multi-trait, indirect, and trait-assisted genomic selection for improvement of biomass sorghum in THEORETICAL AND APPLIED GENETICS
  • 2010-10. Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects in THEORETICAL AND APPLIED GENETICS
  • 2014-07. Adverse weather conditions for European wheat production will become more frequent with climate change in NATURE CLIMATE CHANGE
  • 2010-12. The impact of genetic relationship information on genomic breeding values in German Holstein cattle in GENETICS SELECTION EVOLUTION
  • 2007-11. Markers associated with a QTL for grain yield in wheat under drought in MOLECULAR BREEDING
  • 2012-11. Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments in THEORETICAL AND APPLIED GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00122-018-3206-3

    DOI

    http://dx.doi.org/10.1007/s00122-018-3206-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1107724783

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30341493


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "International Maize and Wheat Improvement Center", 
              "id": "https://www.grid.ac/institutes/grid.433436.5", 
              "name": [
                "International Maize and Wheat Improvement Center (CIMMYT), Postal 6-641, 06600, Mexico, D.F., Mexico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Juliana", 
            "givenName": "Philomin", 
            "id": "sg:person.016325601343.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016325601343.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Colima", 
              "id": "https://www.grid.ac/institutes/grid.412887.0", 
              "name": [
                "Facultad de Telem\u00e1tica, Universidad de Colima, 28040, Colima, Mexico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Montesinos-L\u00f3pez", 
            "givenName": "Osval A.", 
            "id": "sg:person.01064375741.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064375741.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "International Maize and Wheat Improvement Center", 
              "id": "https://www.grid.ac/institutes/grid.433436.5", 
              "name": [
                "International Maize and Wheat Improvement Center (CIMMYT), Postal 6-641, 06600, Mexico, D.F., Mexico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Crossa", 
            "givenName": "Jos\u00e9", 
            "id": "sg:person.01274600533.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274600533.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "International Maize and Wheat Improvement Center", 
              "id": "https://www.grid.ac/institutes/grid.433436.5", 
              "name": [
                "International Maize and Wheat Improvement Center (CIMMYT), Postal 6-641, 06600, Mexico, D.F., Mexico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mondal", 
            "givenName": "Suchismita", 
            "id": "sg:person.010453017671.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010453017671.77"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "International Maize and Wheat Improvement Center", 
              "id": "https://www.grid.ac/institutes/grid.433436.5", 
              "name": [
                "International Maize and Wheat Improvement Center (CIMMYT), Postal 6-641, 06600, Mexico, D.F., Mexico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gonz\u00e1lez P\u00e9rez", 
            "givenName": "Lorena", 
            "id": "sg:person.010317426205.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010317426205.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Kansas State University", 
              "id": "https://www.grid.ac/institutes/grid.36567.31", 
              "name": [
                "Department of Plant Pathology and Agronomy, Wheat Genetics Resource Center, Kansas State University, 66506, Manhattan, KS, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Poland", 
            "givenName": "Jesse", 
            "id": "sg:person.015631243271.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015631243271.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Campo Experimental Valle de M\u00e9xico INIFAP, 56230, Chapingo, Edo. de M\u00e9xico, Mexico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huerta-Espino", 
            "givenName": "Julio", 
            "id": "sg:person.01025512607.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025512607.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "International Maize and Wheat Improvement Center", 
              "id": "https://www.grid.ac/institutes/grid.433436.5", 
              "name": [
                "International Maize and Wheat Improvement Center (CIMMYT), Postal 6-641, 06600, Mexico, D.F., Mexico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Crespo-Herrera", 
            "givenName": "Leonardo", 
            "id": "sg:person.01320432314.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320432314.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "International Maize and Wheat Improvement Center", 
              "id": "https://www.grid.ac/institutes/grid.433436.5", 
              "name": [
                "International Maize and Wheat Improvement Center (CIMMYT), Postal 6-641, 06600, Mexico, D.F., Mexico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Govindan", 
            "givenName": "Velu", 
            "id": "sg:person.0766374326.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766374326.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "International Maize and Wheat Improvement Center", 
              "id": "https://www.grid.ac/institutes/grid.433436.5", 
              "name": [
                "International Maize and Wheat Improvement Center (CIMMYT), Postal 6-641, 06600, Mexico, D.F., Mexico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dreisigacker", 
            "givenName": "Susanne", 
            "id": "sg:person.0633774530.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633774530.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Kansas State University", 
              "id": "https://www.grid.ac/institutes/grid.36567.31", 
              "name": [
                "Department of Plant Pathology and Agronomy, Wheat Genetics Resource Center, Kansas State University, 66506, Manhattan, KS, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shrestha", 
            "givenName": "Sandesh", 
            "id": "sg:person.010155274343.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010155274343.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Colegio de Postgraduados", 
              "id": "https://www.grid.ac/institutes/grid.418752.d", 
              "name": [
                "Colegio de Postgraduados, 56230, Montecillo, Edo. de M\u00e9xico, Mexico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "P\u00e9rez-Rodr\u00edguez", 
            "givenName": "Paulino", 
            "id": "sg:person.01126723630.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126723630.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "International Maize and Wheat Improvement Center", 
              "id": "https://www.grid.ac/institutes/grid.433436.5", 
              "name": [
                "International Maize and Wheat Improvement Center (CIMMYT), Postal 6-641, 06600, Mexico, D.F., Mexico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pinto Espinosa", 
            "givenName": "Francisco", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "International Maize and Wheat Improvement Center", 
              "id": "https://www.grid.ac/institutes/grid.433436.5", 
              "name": [
                "International Maize and Wheat Improvement Center (CIMMYT), Postal 6-641, 06600, Mexico, D.F., Mexico"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Singh", 
            "givenName": "Ravi P.", 
            "id": "sg:person.01122126436.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122126436.15"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1297-9686-44-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001258243", 
              "https://doi.org/10.1186/1297-9686-44-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-004-1796-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002051947", 
              "https://doi.org/10.1007/s00122-004-1796-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/371920.372071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002434259"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0034-4257(96)00072-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004447572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0019379", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005754650"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006541515", 
              "https://doi.org/10.1038/nmeth.1923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.109.101501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006799846"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.109.101501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006799846"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate2242", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007072305", 
              "https://doi.org/10.1038/nclimate2242"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1297-9686-42-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009819360", 
              "https://doi.org/10.1186/1297-9686-42-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fcr.2016.04.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009965556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fcr.2016.04.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009965556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms6989", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010392333", 
              "https://doi.org/10.1038/ncomms6989"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1071/ar9780897", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010847789"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jxb/erq152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011122809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jxb/erq152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011122809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00022843", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011817288", 
              "https://doi.org/10.1007/bf00022843"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00022843", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011817288", 
              "https://doi.org/10.1007/bf00022843"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1744-7909.2012.01116.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012817859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jcs.2014.01.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013485343"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fcr.2013.07.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013681203"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.112.144246", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013834648"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.112.144246", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013834648"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fcr.2014.01.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015390820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1744-7348.2009.00351.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016474861"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1744-7348.2009.00351.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016474861"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/aab.12108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017615340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00024010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017965739", 
              "https://doi.org/10.1007/bf00024010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00024010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017965739", 
              "https://doi.org/10.1007/bf00024010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1071/fp09121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017977286"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1071/cp13086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018527981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-016-2879-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019456526", 
              "https://doi.org/10.1186/s12864-016-2879-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-016-2879-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019456526", 
              "https://doi.org/10.1186/s12864-016-2879-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-014-2444-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020955555", 
              "https://doi.org/10.1007/s00122-014-2444-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0090346", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021321243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.115.021667", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022348963"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.115.021667", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022348963"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.114.167916", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022894048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.114.167916", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022894048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-010-1351-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022933217", 
              "https://doi.org/10.1007/s00122-010-1351-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-010-1351-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022933217", 
              "https://doi.org/10.1007/s00122-010-1351-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/aob/mcf049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023242724"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.pbi.2008.02.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023261719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-014-1314-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026126108", 
              "https://doi.org/10.1007/s10681-014-1314-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-014-1314-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026126108", 
              "https://doi.org/10.1007/s10681-014-1314-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hdy.2013.16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027840551", 
              "https://doi.org/10.1038/hdy.2013.16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.116.032359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027880388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.116.032359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027880388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1071/cp10344", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027922766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-012-1927-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028032918", 
              "https://doi.org/10.1007/s00122-012-1927-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-012-1927-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028032918", 
              "https://doi.org/10.1007/s00122-012-1927-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btm308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028217957"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.114.164442", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029083888"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.114.164442", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029083888"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2011-4338", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029370066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2011-4338", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029370066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2011-4338", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029370066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/07352688509382196", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029533619"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/07352689.2011.615687", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031906320"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tig.2012.11.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032044525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-4290(89)90028-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034193399"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-4290(89)90028-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034193399"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1071/fp06148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036529464"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/agronomy4020191", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036535772"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bfgp/elq001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037765048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.agee.2008.01.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038343577"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1071/fp13126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038363260"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-007-9100-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038930053", 
              "https://doi.org/10.1007/s11032-007-9100-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1071/ar05069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039734043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1104/pp.112.207753", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039998333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0032253", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041572486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13007-016-0134-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042609767", 
              "https://doi.org/10.1186/s13007-016-0134-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13007-016-0134-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042609767", 
              "https://doi.org/10.1186/s13007-016-0134-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jxb/ers071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044719575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-006-9208-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047087152", 
              "https://doi.org/10.1007/s10681-006-9208-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1071/pp9940717", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047444564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate3115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047776119", 
              "https://doi.org/10.1038/nclimate3115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1439-0388.2007.00700.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049469883"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1439-0388.2007.00700.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049469883"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jxb/eru384", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049513506"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0065-2113(08)60625-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050250364"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.116.032888", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050869607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.116.032888", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050869607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1415181112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051307057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.gfs.2016.02.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052842004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.gfs.2016.02.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052842004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0021859603003411", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053846082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0021859603003411", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053846082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/lgrs.2013.2252877", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061359838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mic.2003.1167344", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061403307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2134/agronj2000.92183x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068994200"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci1994.0011183x003400030014x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069024201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci1998.0011183x003800060011x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069026139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci1999.3961611x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069026559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci2002.1441", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069027677"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci2005.0059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069029257"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci2008.08.0512", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069030749"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci2011.06.0299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069031548"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci2014.12.0827", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069032588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2533274", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069978673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3835/plantgenome2010.04.0005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071447771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3835/plantgenome2012.02.0001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071447813"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3835/plantgenome2016.01.0005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071448011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074795580", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2007-0980", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1077799697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.s0022-0302(98)70157-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083332101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3835/plantgenome2016.08.0082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084653239"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-017-2897-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084749029", 
              "https://doi.org/10.1007/s00122-017-2897-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-017-2897-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084749029", 
              "https://doi.org/10.1007/s00122-017-2897-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3835/plantgenome2016.09.0089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085332508"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-017-2917-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085462726", 
              "https://doi.org/10.1007/s00122-017-2917-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-017-2917-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085462726", 
              "https://doi.org/10.1007/s00122-017-2917-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3835/plantgenome2016.11.0111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085544396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-017-2922-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085581932", 
              "https://doi.org/10.1007/s00122-017-2922-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-017-2922-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085581932", 
              "https://doi.org/10.1007/s00122-017-2922-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1748-9326/aa723b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085863973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.foodpol.2017.05.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085965190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-017-2972-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091328127", 
              "https://doi.org/10.1007/s00122-017-2972-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fcr.2017.11.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092844156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12711-017-0361-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093162671", 
              "https://doi.org/10.1186/s12711-017-0361-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470434697", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098662402"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-017-3033-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099703826", 
              "https://doi.org/10.1007/s00122-017-3033-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aar7191", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106154013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aar7191", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106154013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3835/plantgenome2018.03.0017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107977672"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3835/plantgenome2018.03.0017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107977672"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-01", 
        "datePublishedReg": "2019-01-01", 
        "description": "Genomic selection and high-throughput phenotyping (HTP) are promising tools to accelerate breeding gains for high-yielding and climate-resilient wheat varieties. Hence, our objective was to evaluate them for predicting grain yield (GY) in drought-stressed (DS) and late-sown heat-stressed (HS) environments of the International maize and wheat improvement center's elite yield trial nurseries. We observed that the average genomic prediction accuracies using fivefold cross-validations were 0.50 and 0.51 in the DS and HS environments, respectively. However, when a different nursery/year was used to predict another nursery/year, the average genomic prediction accuracies in the DS and HS environments decreased to 0.18 and 0.23, respectively. While genomic predictions clearly outperformed pedigree-based predictions across nurseries, they were similar to pedigree-based predictions within nurseries due to small family sizes. In populations with some full-sibs in the training population, the genomic and pedigree-based prediction accuracies were on average 0.27 and 0.35 higher than the accuracies in populations with only one progeny per cross, indicating the importance of genetic relatedness between the training and validation populations for good predictions. We also evaluated the item-based collaborative filtering approach for multivariate prediction of GY using the green normalized difference vegetation index from HTP. This approach proved to be the best strategy for across-nursery predictions, with average accuracies of 0.56 and 0.62 in the DS and HS environments, respectively. We conclude that GY is a challenging trait for across-year predictions, but GS and HTP can be integrated in increasing the size of populations screened and evaluating unphenotyped large nurseries for stress-resilience within years.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00122-018-3206-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1135804", 
            "issn": [
              "0040-5752", 
              "1432-2242"
            ], 
            "name": "Theoretical and Applied Genetics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "132"
          }
        ], 
        "name": "Integrating genomic-enabled prediction and high-throughput phenotyping in breeding for climate-resilient bread wheat", 
        "pagination": "177-194", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "479441e1f6cb4f74539f245f608748417eafb450dd960f47b612291ecfd8acc0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30341493"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0145600"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00122-018-3206-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1107724783"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00122-018-3206-3", 
          "https://app.dimensions.ai/details/publication/pub.1107724783"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:40", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000319_0000000319/records_11202_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00122-018-3206-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00122-018-3206-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00122-018-3206-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00122-018-3206-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00122-018-3206-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    487 TRIPLES      21 PREDICATES      127 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00122-018-3206-3 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author N8af1595f7dc348b9b93c0f3191e6940f
    4 schema:citation sg:pub.10.1007/bf00022843
    5 sg:pub.10.1007/bf00024010
    6 sg:pub.10.1007/s00122-004-1796-4
    7 sg:pub.10.1007/s00122-010-1351-4
    8 sg:pub.10.1007/s00122-012-1927-2
    9 sg:pub.10.1007/s00122-014-2444-2
    10 sg:pub.10.1007/s00122-017-2897-1
    11 sg:pub.10.1007/s00122-017-2917-1
    12 sg:pub.10.1007/s00122-017-2922-4
    13 sg:pub.10.1007/s00122-017-2972-7
    14 sg:pub.10.1007/s00122-017-3033-y
    15 sg:pub.10.1007/s10681-006-9208-2
    16 sg:pub.10.1007/s10681-014-1314-y
    17 sg:pub.10.1007/s11032-007-9100-3
    18 sg:pub.10.1038/hdy.2013.16
    19 sg:pub.10.1038/nclimate2242
    20 sg:pub.10.1038/nclimate3115
    21 sg:pub.10.1038/ncomms6989
    22 sg:pub.10.1038/nmeth.1923
    23 sg:pub.10.1186/1297-9686-42-5
    24 sg:pub.10.1186/1297-9686-44-4
    25 sg:pub.10.1186/s12711-017-0361-y
    26 sg:pub.10.1186/s12864-016-2879-8
    27 sg:pub.10.1186/s13007-016-0134-6
    28 https://app.dimensions.ai/details/publication/pub.1074795580
    29 https://doi.org/10.1002/9780470434697
    30 https://doi.org/10.1016/0378-4290(89)90028-2
    31 https://doi.org/10.1016/j.agee.2008.01.019
    32 https://doi.org/10.1016/j.fcr.2013.07.020
    33 https://doi.org/10.1016/j.fcr.2014.01.013
    34 https://doi.org/10.1016/j.fcr.2016.04.017
    35 https://doi.org/10.1016/j.fcr.2017.11.008
    36 https://doi.org/10.1016/j.foodpol.2017.05.001
    37 https://doi.org/10.1016/j.gfs.2016.02.002
    38 https://doi.org/10.1016/j.jcs.2014.01.006
    39 https://doi.org/10.1016/j.pbi.2008.02.005
    40 https://doi.org/10.1016/j.tig.2012.11.009
    41 https://doi.org/10.1016/s0034-4257(96)00072-7
    42 https://doi.org/10.1016/s0065-2113(08)60625-2
    43 https://doi.org/10.1017/s0021859603003411
    44 https://doi.org/10.1071/ar05069
    45 https://doi.org/10.1071/ar9780897
    46 https://doi.org/10.1071/cp10344
    47 https://doi.org/10.1071/cp13086
    48 https://doi.org/10.1071/fp06148
    49 https://doi.org/10.1071/fp09121
    50 https://doi.org/10.1071/fp13126
    51 https://doi.org/10.1071/pp9940717
    52 https://doi.org/10.1073/pnas.1415181112
    53 https://doi.org/10.1080/07352688509382196
    54 https://doi.org/10.1080/07352689.2011.615687
    55 https://doi.org/10.1088/1748-9326/aa723b
    56 https://doi.org/10.1093/aob/mcf049
    57 https://doi.org/10.1093/bfgp/elq001
    58 https://doi.org/10.1093/bioinformatics/btm308
    59 https://doi.org/10.1093/jxb/erq152
    60 https://doi.org/10.1093/jxb/ers071
    61 https://doi.org/10.1093/jxb/eru384
    62 https://doi.org/10.1104/pp.112.207753
    63 https://doi.org/10.1109/lgrs.2013.2252877
    64 https://doi.org/10.1109/mic.2003.1167344
    65 https://doi.org/10.1111/aab.12108
    66 https://doi.org/10.1111/j.1439-0388.2007.00700.x
    67 https://doi.org/10.1111/j.1744-7348.2009.00351.x
    68 https://doi.org/10.1111/j.1744-7909.2012.01116.x
    69 https://doi.org/10.1126/science.aar7191
    70 https://doi.org/10.1145/371920.372071
    71 https://doi.org/10.1371/journal.pone.0019379
    72 https://doi.org/10.1371/journal.pone.0032253
    73 https://doi.org/10.1371/journal.pone.0090346
    74 https://doi.org/10.1534/g3.115.021667
    75 https://doi.org/10.1534/g3.116.032359
    76 https://doi.org/10.1534/g3.116.032888
    77 https://doi.org/10.1534/genetics.109.101501
    78 https://doi.org/10.1534/genetics.112.144246
    79 https://doi.org/10.1534/genetics.114.164442
    80 https://doi.org/10.1534/genetics.114.167916
    81 https://doi.org/10.2134/agronj2000.92183x
    82 https://doi.org/10.2135/cropsci1994.0011183x003400030014x
    83 https://doi.org/10.2135/cropsci1998.0011183x003800060011x
    84 https://doi.org/10.2135/cropsci1999.3961611x
    85 https://doi.org/10.2135/cropsci2002.1441
    86 https://doi.org/10.2135/cropsci2005.0059
    87 https://doi.org/10.2135/cropsci2008.08.0512
    88 https://doi.org/10.2135/cropsci2011.06.0299
    89 https://doi.org/10.2135/cropsci2014.12.0827
    90 https://doi.org/10.2307/2533274
    91 https://doi.org/10.3168/jds.2007-0980
    92 https://doi.org/10.3168/jds.2011-4338
    93 https://doi.org/10.3168/jds.s0022-0302(98)70157-2
    94 https://doi.org/10.3390/agronomy4020191
    95 https://doi.org/10.3835/plantgenome2010.04.0005
    96 https://doi.org/10.3835/plantgenome2012.02.0001
    97 https://doi.org/10.3835/plantgenome2016.01.0005
    98 https://doi.org/10.3835/plantgenome2016.08.0082
    99 https://doi.org/10.3835/plantgenome2016.09.0089
    100 https://doi.org/10.3835/plantgenome2016.11.0111
    101 https://doi.org/10.3835/plantgenome2018.03.0017
    102 schema:datePublished 2019-01
    103 schema:datePublishedReg 2019-01-01
    104 schema:description Genomic selection and high-throughput phenotyping (HTP) are promising tools to accelerate breeding gains for high-yielding and climate-resilient wheat varieties. Hence, our objective was to evaluate them for predicting grain yield (GY) in drought-stressed (DS) and late-sown heat-stressed (HS) environments of the International maize and wheat improvement center's elite yield trial nurseries. We observed that the average genomic prediction accuracies using fivefold cross-validations were 0.50 and 0.51 in the DS and HS environments, respectively. However, when a different nursery/year was used to predict another nursery/year, the average genomic prediction accuracies in the DS and HS environments decreased to 0.18 and 0.23, respectively. While genomic predictions clearly outperformed pedigree-based predictions across nurseries, they were similar to pedigree-based predictions within nurseries due to small family sizes. In populations with some full-sibs in the training population, the genomic and pedigree-based prediction accuracies were on average 0.27 and 0.35 higher than the accuracies in populations with only one progeny per cross, indicating the importance of genetic relatedness between the training and validation populations for good predictions. We also evaluated the item-based collaborative filtering approach for multivariate prediction of GY using the green normalized difference vegetation index from HTP. This approach proved to be the best strategy for across-nursery predictions, with average accuracies of 0.56 and 0.62 in the DS and HS environments, respectively. We conclude that GY is a challenging trait for across-year predictions, but GS and HTP can be integrated in increasing the size of populations screened and evaluating unphenotyped large nurseries for stress-resilience within years.
    105 schema:genre research_article
    106 schema:inLanguage en
    107 schema:isAccessibleForFree false
    108 schema:isPartOf Nb88dd698e5fc41a78b5d4f77fc70e054
    109 Ndc9db7d5533c48c3a98127f01c272608
    110 sg:journal.1135804
    111 schema:name Integrating genomic-enabled prediction and high-throughput phenotyping in breeding for climate-resilient bread wheat
    112 schema:pagination 177-194
    113 schema:productId N1b84d3929b7d4f89bc693d98cff65d2a
    114 N2fc65af57843420a8e7596562e4167be
    115 N4146d0a2ca984101a7ffbef046b0afab
    116 N62c7689ff5824105a0834f8274fbbc20
    117 Na775ad5e1e3e4b6d880e39226c8be7d0
    118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107724783
    119 https://doi.org/10.1007/s00122-018-3206-3
    120 schema:sdDatePublished 2019-04-11T08:40
    121 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    122 schema:sdPublisher N3ceb53606a04405fa379aa0c484c998b
    123 schema:url https://link.springer.com/10.1007%2Fs00122-018-3206-3
    124 sgo:license sg:explorer/license/
    125 sgo:sdDataset articles
    126 rdf:type schema:ScholarlyArticle
    127 N1476470b8b294d2b8e0e1997e9b606c2 rdf:first sg:person.0766374326.45
    128 rdf:rest N64e6970cafe24a46afdd87eb8c77c31a
    129 N197222f7f59849b28da29a56f054e24d rdf:first N556181505fab4b8fbed52aae04635ef9
    130 rdf:rest N1bbb58a7e59c4553a3d9e8a38af56a4d
    131 N1a266304898e4ff9ae706cb064b7e064 rdf:first sg:person.010155274343.06
    132 rdf:rest Nc7d9bd3f80824241a4f6321a20b23f7e
    133 N1b84d3929b7d4f89bc693d98cff65d2a schema:name doi
    134 schema:value 10.1007/s00122-018-3206-3
    135 rdf:type schema:PropertyValue
    136 N1bbb58a7e59c4553a3d9e8a38af56a4d rdf:first sg:person.01122126436.15
    137 rdf:rest rdf:nil
    138 N1f9764069acc41a688f0c1767c72eac4 rdf:first sg:person.01025512607.08
    139 rdf:rest Nb01fb5023d9d4c15b9f3a6029fcf81ef
    140 N2fc65af57843420a8e7596562e4167be schema:name pubmed_id
    141 schema:value 30341493
    142 rdf:type schema:PropertyValue
    143 N3ceb53606a04405fa379aa0c484c998b schema:name Springer Nature - SN SciGraph project
    144 rdf:type schema:Organization
    145 N4146d0a2ca984101a7ffbef046b0afab schema:name dimensions_id
    146 schema:value pub.1107724783
    147 rdf:type schema:PropertyValue
    148 N556181505fab4b8fbed52aae04635ef9 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
    149 schema:familyName Pinto Espinosa
    150 schema:givenName Francisco
    151 rdf:type schema:Person
    152 N62c7689ff5824105a0834f8274fbbc20 schema:name readcube_id
    153 schema:value 479441e1f6cb4f74539f245f608748417eafb450dd960f47b612291ecfd8acc0
    154 rdf:type schema:PropertyValue
    155 N64e6970cafe24a46afdd87eb8c77c31a rdf:first sg:person.0633774530.75
    156 rdf:rest N1a266304898e4ff9ae706cb064b7e064
    157 N78eded84fdd14caeaa2ae590874d41df rdf:first sg:person.01064375741.28
    158 rdf:rest N7a6f49810d0a447f9ba3bf5bce58b110
    159 N7a6f49810d0a447f9ba3bf5bce58b110 rdf:first sg:person.01274600533.83
    160 rdf:rest Ne0684b51c9e149fc8d93ab575e74f6f3
    161 N84156f5bd86746c194f8577b7c974fe0 schema:name Campo Experimental Valle de México INIFAP, 56230, Chapingo, Edo. de México, Mexico
    162 rdf:type schema:Organization
    163 N8af1595f7dc348b9b93c0f3191e6940f rdf:first sg:person.016325601343.73
    164 rdf:rest N78eded84fdd14caeaa2ae590874d41df
    165 N906905c0351541c79aaaf2f1274ca89a rdf:first sg:person.010317426205.26
    166 rdf:rest Nad5c566896164ee99aa8c2f850e19390
    167 Na775ad5e1e3e4b6d880e39226c8be7d0 schema:name nlm_unique_id
    168 schema:value 0145600
    169 rdf:type schema:PropertyValue
    170 Nad5c566896164ee99aa8c2f850e19390 rdf:first sg:person.015631243271.25
    171 rdf:rest N1f9764069acc41a688f0c1767c72eac4
    172 Nb01fb5023d9d4c15b9f3a6029fcf81ef rdf:first sg:person.01320432314.56
    173 rdf:rest N1476470b8b294d2b8e0e1997e9b606c2
    174 Nb88dd698e5fc41a78b5d4f77fc70e054 schema:issueNumber 1
    175 rdf:type schema:PublicationIssue
    176 Nc7d9bd3f80824241a4f6321a20b23f7e rdf:first sg:person.01126723630.66
    177 rdf:rest N197222f7f59849b28da29a56f054e24d
    178 Ndc9db7d5533c48c3a98127f01c272608 schema:volumeNumber 132
    179 rdf:type schema:PublicationVolume
    180 Ne0684b51c9e149fc8d93ab575e74f6f3 rdf:first sg:person.010453017671.77
    181 rdf:rest N906905c0351541c79aaaf2f1274ca89a
    182 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    183 schema:name Biological Sciences
    184 rdf:type schema:DefinedTerm
    185 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    186 schema:name Genetics
    187 rdf:type schema:DefinedTerm
    188 sg:journal.1135804 schema:issn 0040-5752
    189 1432-2242
    190 schema:name Theoretical and Applied Genetics
    191 rdf:type schema:Periodical
    192 sg:person.010155274343.06 schema:affiliation https://www.grid.ac/institutes/grid.36567.31
    193 schema:familyName Shrestha
    194 schema:givenName Sandesh
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010155274343.06
    196 rdf:type schema:Person
    197 sg:person.01025512607.08 schema:affiliation N84156f5bd86746c194f8577b7c974fe0
    198 schema:familyName Huerta-Espino
    199 schema:givenName Julio
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025512607.08
    201 rdf:type schema:Person
    202 sg:person.010317426205.26 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
    203 schema:familyName González Pérez
    204 schema:givenName Lorena
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010317426205.26
    206 rdf:type schema:Person
    207 sg:person.010453017671.77 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
    208 schema:familyName Mondal
    209 schema:givenName Suchismita
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010453017671.77
    211 rdf:type schema:Person
    212 sg:person.01064375741.28 schema:affiliation https://www.grid.ac/institutes/grid.412887.0
    213 schema:familyName Montesinos-López
    214 schema:givenName Osval A.
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064375741.28
    216 rdf:type schema:Person
    217 sg:person.01122126436.15 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
    218 schema:familyName Singh
    219 schema:givenName Ravi P.
    220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122126436.15
    221 rdf:type schema:Person
    222 sg:person.01126723630.66 schema:affiliation https://www.grid.ac/institutes/grid.418752.d
    223 schema:familyName Pérez-Rodríguez
    224 schema:givenName Paulino
    225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126723630.66
    226 rdf:type schema:Person
    227 sg:person.01274600533.83 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
    228 schema:familyName Crossa
    229 schema:givenName José
    230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274600533.83
    231 rdf:type schema:Person
    232 sg:person.01320432314.56 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
    233 schema:familyName Crespo-Herrera
    234 schema:givenName Leonardo
    235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320432314.56
    236 rdf:type schema:Person
    237 sg:person.015631243271.25 schema:affiliation https://www.grid.ac/institutes/grid.36567.31
    238 schema:familyName Poland
    239 schema:givenName Jesse
    240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015631243271.25
    241 rdf:type schema:Person
    242 sg:person.016325601343.73 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
    243 schema:familyName Juliana
    244 schema:givenName Philomin
    245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016325601343.73
    246 rdf:type schema:Person
    247 sg:person.0633774530.75 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
    248 schema:familyName Dreisigacker
    249 schema:givenName Susanne
    250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633774530.75
    251 rdf:type schema:Person
    252 sg:person.0766374326.45 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
    253 schema:familyName Govindan
    254 schema:givenName Velu
    255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766374326.45
    256 rdf:type schema:Person
    257 sg:pub.10.1007/bf00022843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011817288
    258 https://doi.org/10.1007/bf00022843
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1007/bf00024010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017965739
    261 https://doi.org/10.1007/bf00024010
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1007/s00122-004-1796-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002051947
    264 https://doi.org/10.1007/s00122-004-1796-4
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1007/s00122-010-1351-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022933217
    267 https://doi.org/10.1007/s00122-010-1351-4
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1007/s00122-012-1927-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028032918
    270 https://doi.org/10.1007/s00122-012-1927-2
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1007/s00122-014-2444-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020955555
    273 https://doi.org/10.1007/s00122-014-2444-2
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1007/s00122-017-2897-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084749029
    276 https://doi.org/10.1007/s00122-017-2897-1
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1007/s00122-017-2917-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085462726
    279 https://doi.org/10.1007/s00122-017-2917-1
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1007/s00122-017-2922-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085581932
    282 https://doi.org/10.1007/s00122-017-2922-4
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1007/s00122-017-2972-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091328127
    285 https://doi.org/10.1007/s00122-017-2972-7
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1007/s00122-017-3033-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1099703826
    288 https://doi.org/10.1007/s00122-017-3033-y
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1007/s10681-006-9208-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047087152
    291 https://doi.org/10.1007/s10681-006-9208-2
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1007/s10681-014-1314-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1026126108
    294 https://doi.org/10.1007/s10681-014-1314-y
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1007/s11032-007-9100-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038930053
    297 https://doi.org/10.1007/s11032-007-9100-3
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1038/hdy.2013.16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027840551
    300 https://doi.org/10.1038/hdy.2013.16
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1038/nclimate2242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007072305
    303 https://doi.org/10.1038/nclimate2242
    304 rdf:type schema:CreativeWork
    305 sg:pub.10.1038/nclimate3115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047776119
    306 https://doi.org/10.1038/nclimate3115
    307 rdf:type schema:CreativeWork
    308 sg:pub.10.1038/ncomms6989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010392333
    309 https://doi.org/10.1038/ncomms6989
    310 rdf:type schema:CreativeWork
    311 sg:pub.10.1038/nmeth.1923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006541515
    312 https://doi.org/10.1038/nmeth.1923
    313 rdf:type schema:CreativeWork
    314 sg:pub.10.1186/1297-9686-42-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009819360
    315 https://doi.org/10.1186/1297-9686-42-5
    316 rdf:type schema:CreativeWork
    317 sg:pub.10.1186/1297-9686-44-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001258243
    318 https://doi.org/10.1186/1297-9686-44-4
    319 rdf:type schema:CreativeWork
    320 sg:pub.10.1186/s12711-017-0361-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1093162671
    321 https://doi.org/10.1186/s12711-017-0361-y
    322 rdf:type schema:CreativeWork
    323 sg:pub.10.1186/s12864-016-2879-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019456526
    324 https://doi.org/10.1186/s12864-016-2879-8
    325 rdf:type schema:CreativeWork
    326 sg:pub.10.1186/s13007-016-0134-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042609767
    327 https://doi.org/10.1186/s13007-016-0134-6
    328 rdf:type schema:CreativeWork
    329 https://app.dimensions.ai/details/publication/pub.1074795580 schema:CreativeWork
    330 https://doi.org/10.1002/9780470434697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098662402
    331 rdf:type schema:CreativeWork
    332 https://doi.org/10.1016/0378-4290(89)90028-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034193399
    333 rdf:type schema:CreativeWork
    334 https://doi.org/10.1016/j.agee.2008.01.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038343577
    335 rdf:type schema:CreativeWork
    336 https://doi.org/10.1016/j.fcr.2013.07.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013681203
    337 rdf:type schema:CreativeWork
    338 https://doi.org/10.1016/j.fcr.2014.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015390820
    339 rdf:type schema:CreativeWork
    340 https://doi.org/10.1016/j.fcr.2016.04.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009965556
    341 rdf:type schema:CreativeWork
    342 https://doi.org/10.1016/j.fcr.2017.11.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092844156
    343 rdf:type schema:CreativeWork
    344 https://doi.org/10.1016/j.foodpol.2017.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085965190
    345 rdf:type schema:CreativeWork
    346 https://doi.org/10.1016/j.gfs.2016.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052842004
    347 rdf:type schema:CreativeWork
    348 https://doi.org/10.1016/j.jcs.2014.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013485343
    349 rdf:type schema:CreativeWork
    350 https://doi.org/10.1016/j.pbi.2008.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023261719
    351 rdf:type schema:CreativeWork
    352 https://doi.org/10.1016/j.tig.2012.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032044525
    353 rdf:type schema:CreativeWork
    354 https://doi.org/10.1016/s0034-4257(96)00072-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004447572
    355 rdf:type schema:CreativeWork
    356 https://doi.org/10.1016/s0065-2113(08)60625-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050250364
    357 rdf:type schema:CreativeWork
    358 https://doi.org/10.1017/s0021859603003411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053846082
    359 rdf:type schema:CreativeWork
    360 https://doi.org/10.1071/ar05069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039734043
    361 rdf:type schema:CreativeWork
    362 https://doi.org/10.1071/ar9780897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010847789
    363 rdf:type schema:CreativeWork
    364 https://doi.org/10.1071/cp10344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027922766
    365 rdf:type schema:CreativeWork
    366 https://doi.org/10.1071/cp13086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018527981
    367 rdf:type schema:CreativeWork
    368 https://doi.org/10.1071/fp06148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036529464
    369 rdf:type schema:CreativeWork
    370 https://doi.org/10.1071/fp09121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017977286
    371 rdf:type schema:CreativeWork
    372 https://doi.org/10.1071/fp13126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038363260
    373 rdf:type schema:CreativeWork
    374 https://doi.org/10.1071/pp9940717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047444564
    375 rdf:type schema:CreativeWork
    376 https://doi.org/10.1073/pnas.1415181112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051307057
    377 rdf:type schema:CreativeWork
    378 https://doi.org/10.1080/07352688509382196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029533619
    379 rdf:type schema:CreativeWork
    380 https://doi.org/10.1080/07352689.2011.615687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031906320
    381 rdf:type schema:CreativeWork
    382 https://doi.org/10.1088/1748-9326/aa723b schema:sameAs https://app.dimensions.ai/details/publication/pub.1085863973
    383 rdf:type schema:CreativeWork
    384 https://doi.org/10.1093/aob/mcf049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023242724
    385 rdf:type schema:CreativeWork
    386 https://doi.org/10.1093/bfgp/elq001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037765048
    387 rdf:type schema:CreativeWork
    388 https://doi.org/10.1093/bioinformatics/btm308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028217957
    389 rdf:type schema:CreativeWork
    390 https://doi.org/10.1093/jxb/erq152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011122809
    391 rdf:type schema:CreativeWork
    392 https://doi.org/10.1093/jxb/ers071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044719575
    393 rdf:type schema:CreativeWork
    394 https://doi.org/10.1093/jxb/eru384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049513506
    395 rdf:type schema:CreativeWork
    396 https://doi.org/10.1104/pp.112.207753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039998333
    397 rdf:type schema:CreativeWork
    398 https://doi.org/10.1109/lgrs.2013.2252877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061359838
    399 rdf:type schema:CreativeWork
    400 https://doi.org/10.1109/mic.2003.1167344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061403307
    401 rdf:type schema:CreativeWork
    402 https://doi.org/10.1111/aab.12108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017615340
    403 rdf:type schema:CreativeWork
    404 https://doi.org/10.1111/j.1439-0388.2007.00700.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049469883
    405 rdf:type schema:CreativeWork
    406 https://doi.org/10.1111/j.1744-7348.2009.00351.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016474861
    407 rdf:type schema:CreativeWork
    408 https://doi.org/10.1111/j.1744-7909.2012.01116.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012817859
    409 rdf:type schema:CreativeWork
    410 https://doi.org/10.1126/science.aar7191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106154013
    411 rdf:type schema:CreativeWork
    412 https://doi.org/10.1145/371920.372071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002434259
    413 rdf:type schema:CreativeWork
    414 https://doi.org/10.1371/journal.pone.0019379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005754650
    415 rdf:type schema:CreativeWork
    416 https://doi.org/10.1371/journal.pone.0032253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041572486
    417 rdf:type schema:CreativeWork
    418 https://doi.org/10.1371/journal.pone.0090346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021321243
    419 rdf:type schema:CreativeWork
    420 https://doi.org/10.1534/g3.115.021667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022348963
    421 rdf:type schema:CreativeWork
    422 https://doi.org/10.1534/g3.116.032359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027880388
    423 rdf:type schema:CreativeWork
    424 https://doi.org/10.1534/g3.116.032888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050869607
    425 rdf:type schema:CreativeWork
    426 https://doi.org/10.1534/genetics.109.101501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006799846
    427 rdf:type schema:CreativeWork
    428 https://doi.org/10.1534/genetics.112.144246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013834648
    429 rdf:type schema:CreativeWork
    430 https://doi.org/10.1534/genetics.114.164442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029083888
    431 rdf:type schema:CreativeWork
    432 https://doi.org/10.1534/genetics.114.167916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022894048
    433 rdf:type schema:CreativeWork
    434 https://doi.org/10.2134/agronj2000.92183x schema:sameAs https://app.dimensions.ai/details/publication/pub.1068994200
    435 rdf:type schema:CreativeWork
    436 https://doi.org/10.2135/cropsci1994.0011183x003400030014x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069024201
    437 rdf:type schema:CreativeWork
    438 https://doi.org/10.2135/cropsci1998.0011183x003800060011x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069026139
    439 rdf:type schema:CreativeWork
    440 https://doi.org/10.2135/cropsci1999.3961611x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069026559
    441 rdf:type schema:CreativeWork
    442 https://doi.org/10.2135/cropsci2002.1441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069027677
    443 rdf:type schema:CreativeWork
    444 https://doi.org/10.2135/cropsci2005.0059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069029257
    445 rdf:type schema:CreativeWork
    446 https://doi.org/10.2135/cropsci2008.08.0512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069030749
    447 rdf:type schema:CreativeWork
    448 https://doi.org/10.2135/cropsci2011.06.0299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069031548
    449 rdf:type schema:CreativeWork
    450 https://doi.org/10.2135/cropsci2014.12.0827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069032588
    451 rdf:type schema:CreativeWork
    452 https://doi.org/10.2307/2533274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069978673
    453 rdf:type schema:CreativeWork
    454 https://doi.org/10.3168/jds.2007-0980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077799697
    455 rdf:type schema:CreativeWork
    456 https://doi.org/10.3168/jds.2011-4338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029370066
    457 rdf:type schema:CreativeWork
    458 https://doi.org/10.3168/jds.s0022-0302(98)70157-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083332101
    459 rdf:type schema:CreativeWork
    460 https://doi.org/10.3390/agronomy4020191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036535772
    461 rdf:type schema:CreativeWork
    462 https://doi.org/10.3835/plantgenome2010.04.0005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071447771
    463 rdf:type schema:CreativeWork
    464 https://doi.org/10.3835/plantgenome2012.02.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071447813
    465 rdf:type schema:CreativeWork
    466 https://doi.org/10.3835/plantgenome2016.01.0005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071448011
    467 rdf:type schema:CreativeWork
    468 https://doi.org/10.3835/plantgenome2016.08.0082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084653239
    469 rdf:type schema:CreativeWork
    470 https://doi.org/10.3835/plantgenome2016.09.0089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085332508
    471 rdf:type schema:CreativeWork
    472 https://doi.org/10.3835/plantgenome2016.11.0111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085544396
    473 rdf:type schema:CreativeWork
    474 https://doi.org/10.3835/plantgenome2018.03.0017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107977672
    475 rdf:type schema:CreativeWork
    476 https://www.grid.ac/institutes/grid.36567.31 schema:alternateName Kansas State University
    477 schema:name Department of Plant Pathology and Agronomy, Wheat Genetics Resource Center, Kansas State University, 66506, Manhattan, KS, USA
    478 rdf:type schema:Organization
    479 https://www.grid.ac/institutes/grid.412887.0 schema:alternateName University of Colima
    480 schema:name Facultad de Telemática, Universidad de Colima, 28040, Colima, Mexico
    481 rdf:type schema:Organization
    482 https://www.grid.ac/institutes/grid.418752.d schema:alternateName Colegio de Postgraduados
    483 schema:name Colegio de Postgraduados, 56230, Montecillo, Edo. de México, Mexico
    484 rdf:type schema:Organization
    485 https://www.grid.ac/institutes/grid.433436.5 schema:alternateName International Maize and Wheat Improvement Center
    486 schema:name International Maize and Wheat Improvement Center (CIMMYT), Postal 6-641, 06600, Mexico, D.F., Mexico
    487 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...