Construction of a high-density linkage map and QTL detection of downy mildew resistance in Vitis aestivalis-derived ‘Norton’ View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Surya Sapkota, Li-Ling Chen, Shanshan Yang, Katie E. Hyma, Lance Cadle-Davidson, Chin-Feng Hwang

ABSTRACT

KEY MESSAGE: A major QTL for downy mildew resistance was detected on chromosome 18 (Rpv27) in Vitis aestivalis-derived 'Norton' based on a high-resolution linkage map with SNP and SSR markers as well as 2 years of field and laboratory phenotyping data. Grapevine downy mildew caused by the oomycete Plasmopara viticola is one of the most widespread and destructive diseases, particularly in humid viticultural areas where it damages green tissues and defoliates vines. Traditional Vitis vinifera wine grape cultivars are susceptible to downy mildew whereas several North American and a few Asian cultivars possess various levels of resistance to this disease. To identify genetic determinants of downy mildew resistance in V. aestivalis-derived 'Norton,' a mapping population with 182 genotypes was developed from a cross between 'Norton' and V. vinifera 'Cabernet Sauvignon' from which a consensus map was constructed via 411 simple sequence repeat (SSR) markers. Using genotyping-by-sequencing, 3825 single nucleotide polymorphism (SNP) markers were also generated. Of these, 1665 SNP and 407 SSR markers were clustered into 19 linkage groups in 159 genotypes, spanning a genetic distance of 2203.5 cM. Disease progression in response to P. viticola was studied in this population for 2 years under both laboratory and field conditions, and strong correlations were observed among data sets (Spearman correlation coefficient = 0.57-0.79). A quantitative trait loci (QTL) analysis indicated a resistance locus on chromosome 18, here named Rpv27, explaining 33.8% of the total phenotypic variation. Flanking markers closely linked with the trait can be further used for marker-assisted selection in the development of new cultivars with resistance to downy mildew. More... »

PAGES

1-11

References to SciGraph publications

  • 2012-01. Rpv10: a new locus from the Asian Vitis gene pool for pyramiding downy mildew resistance loci in grapevine in THEORETICAL AND APPLIED GENETICS
  • 2010-04. Comparative genome-wide segregation analysis and map construction using a reciprocal cross design to facilitate citrus germplasm utilization in MOLECULAR BREEDING
  • 2010-12. A comparison of SNPs and microsatellites as linkage mapping markers: lessons from the zebra finch (Taeniopygia guttata) in BMC GENOMICS
  • 2014-12. Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq) in BMC GENOMICS
  • 2012-12. A reference genetic map of Muscadinia rotundifolia and identification of Ren5, a new major locus for resistance to grapevine powdery mildew in THEORETICAL AND APPLIED GENETICS
  • 2006-08. An integrated SSR map of grapevine based on five mapping populations in THEORETICAL AND APPLIED GENETICS
  • 2013-12. Construction of a high-density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing in BMC PLANT BIOLOGY
  • 2018-05. Single and multiple phenotype QTL analyses of downy mildew resistance in interspecific grapevines in THEORETICAL AND APPLIED GENETICS
  • 2012-02. Selective sweep at the Rpv3 locus during grapevine breeding for downy mildew resistance in THEORETICAL AND APPLIED GENETICS
  • 2016-08. Quantitative trait loci affecting pathogen resistance and ripening of grapevines in MOLECULAR GENETICS AND GENOMICS
  • 2011-02. Genetic linkage maps of two interspecific grape crosses (Vitis spp.) used to localize quantitative trait loci for downy mildew resistance in TREE GENETICS & GENOMES
  • 2014-11. Detection of downy and powdery mildew resistance QTL in a ‘Regent’ × ‘RedGlobe’ population in EUPHYTICA
  • 2009-12. Resistance to Plasmopara viticola in grapevine ‘Bianca’ is controlled by a major dominant gene causing localised necrosis at the infection site in THEORETICAL AND APPLIED GENETICS
  • 2007-02. Development of SCAR markers linked to powdery mildew (Uncinula necator) resistance in grapevine (Vitis vinifera L. and Vitis sp.) in MOLECULAR BREEDING
  • 2012-11. Large SNP arrays for genotyping in crop plants in JOURNAL OF BIOSCIENCES
  • 2017-05. Constructing a genetic linkage map of Vitis aestivalis-derived “Norton” and its use in comparing Norton and Cynthiana in MOLECULAR BREEDING
  • 2010-12. General and species-specific transcriptional responses to downy mildew infection in a susceptible (Vitis vinifera) and a resistant (V. riparia) grapevine species in BMC GENOMICS
  • 2007-09. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla in NATURE
  • 2007. Single Nucleotide Polymorphism Discovery in ASSOCIATION MAPPING IN PLANTS
  • 2004-02. Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine in THEORETICAL AND APPLIED GENETICS
  • 2012-12. A reference genetic map of C. clementina hort. ex Tan.; citrus evolution inferences from comparative mapping in BMC GENOMICS
  • 2014-01. Grapevine powdery mildew resistance and susceptibility loci identified on a high-resolution SNP map in THEORETICAL AND APPLIED GENETICS
  • 2011-06. Construction of a reference linkage map of Vitis amurensis and genetic mapping of Rpv8, a locus conferring resistance to grapevine downy mildew in THEORETICAL AND APPLIED GENETICS
  • 2013-12. Saturated linkage map construction in Rubus idaeususing genotyping by sequencing and genome-independent imputation in BMC GENOMICS
  • 2011-07. Genome-wide genetic marker discovery and genotyping using next-generation sequencing in NATURE REVIEWS GENETICS
  • 2009-05. Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine in THEORETICAL AND APPLIED GENETICS
  • 2013-11. Bridging the genotyping gap: using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations in THEORETICAL AND APPLIED GENETICS
  • 2007-11. Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L) in MOLECULAR BREEDING
  • 2015-12. Construction of a high-density linkage map and fine mapping of QTL for growth in Asian seabass in SCIENTIFIC REPORTS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00122-018-3203-6

    DOI

    http://dx.doi.org/10.1007/s00122-018-3203-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1107724681

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30341491


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Cornell University", 
              "id": "https://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "State Fruit Experiment Station at Mountain Grove Campus, Darr College of Agriculture, Missouri State University, 65897, Springfield, MO, USA", 
                "Division of Plant Sciences, University of Missouri, 65211, Columbia, MO, USA", 
                "Plant Pathology and Plant Microbe Biology Section, School of Integrative Plant Science, NYS Agricultural Experiment Station, Cornell University, 14456, Geneva, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sapkota", 
            "givenName": "Surya", 
            "id": "sg:person.010220104637.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010220104637.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Missouri State University", 
              "id": "https://www.grid.ac/institutes/grid.260126.1", 
              "name": [
                "State Fruit Experiment Station at Mountain Grove Campus, Darr College of Agriculture, Missouri State University, 65897, Springfield, MO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Li-Ling", 
            "id": "sg:person.015273773234.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015273773234.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Arizona State University", 
              "id": "https://www.grid.ac/institutes/grid.215654.1", 
              "name": [
                "Bioinformatics Core Facility, The Biodesign Institute, Arizona State University, 85287-5001, Tempe, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Shanshan", 
            "id": "sg:person.01307254657.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307254657.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cornell University", 
              "id": "https://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "Bioinformatics Facility, Institute of Biotechnology, Cornell University, 14853, Ithaca, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hyma", 
            "givenName": "Katie E.", 
            "id": "sg:person.01030754617.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030754617.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Agricultural Research Service", 
              "id": "https://www.grid.ac/institutes/grid.463419.d", 
              "name": [
                "USDA-ARS Grape Genetics Research Unit, 14456, Geneva, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cadle-Davidson", 
            "givenName": "Lance", 
            "id": "sg:person.0660671434.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660671434.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Missouri State University", 
              "id": "https://www.grid.ac/institutes/grid.260126.1", 
              "name": [
                "State Fruit Experiment Station at Mountain Grove Campus, Darr College of Agriculture, Missouri State University, 65897, Springfield, MO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hwang", 
            "givenName": "Chin-Feng", 
            "id": "sg:person.0770361142.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770361142.24"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1371/journal.pone.0139406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005257524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0019379", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005754650"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00438-016-1200-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005930552", 
              "https://doi.org/10.1007/s00438-016-1200-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-11-218", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005950875", 
              "https://doi.org/10.1186/1471-2164-11-218"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0102448", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007228075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-007-9097-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009344109", 
              "https://doi.org/10.1007/s11032-007-9097-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fpls.2015.00367", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010972917"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12038-012-9225-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011529530", 
              "https://doi.org/10.1007/s12038-012-9225-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fpls.2014.00484", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015293823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.scienta.2014.09.048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015325584"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-13-593", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015465180", 
              "https://doi.org/10.1186/1471-2164-13-593"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11295-010-0322-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016816211", 
              "https://doi.org/10.1007/s11295-010-0322-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/09571264.2012.747087", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017168126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-15-351", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017283571", 
              "https://doi.org/10.1186/1471-2164-15-351"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btg112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019414948"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-009-1167-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020261521", 
              "https://doi.org/10.1007/s00122-009-1167-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-009-1167-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020261521", 
              "https://doi.org/10.1007/s00122-009-1167-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-009-1167-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020261521", 
              "https://doi.org/10.1007/s00122-009-1167-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-006-9047-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021042206", 
              "https://doi.org/10.1007/s11032-006-9047-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0016672312000274", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023507834"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-012-1942-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023583787", 
              "https://doi.org/10.1007/s00122-012-1942-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0065-2296(08)60074-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026131716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btm308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028217957"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep16358", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030421109", 
              "https://doi.org/10.1038/srep16358"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0080791", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031412656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-011-1565-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031810479", 
              "https://doi.org/10.1007/s00122-011-1565-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-009-0979-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032124912", 
              "https://doi.org/10.1007/s00122-009-0979-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-009-0979-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032124912", 
              "https://doi.org/10.1007/s00122-009-0979-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0134880", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033649195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034382223", 
              "https://doi.org/10.1038/nrg3012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jhered/93.1.77", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035613632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-11-117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035738727", 
              "https://doi.org/10.1186/1471-2164-11-117"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038266369"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-14-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038801448", 
              "https://doi.org/10.1186/1471-2164-14-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-009-9363-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038877854", 
              "https://doi.org/10.1007/s11032-009-9363-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-009-9363-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038877854", 
              "https://doi.org/10.1007/s11032-009-9363-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-36011-9_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039143094", 
              "https://doi.org/10.1007/978-0-387-36011-9_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-36011-9_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039143094", 
              "https://doi.org/10.1007/978-0-387-36011-9_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2229-13-141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040566935", 
              "https://doi.org/10.1186/1471-2229-13-141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040664071", 
              "https://doi.org/10.1038/nature06148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-013-2202-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042096665", 
              "https://doi.org/10.1007/s00122-013-2202-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-013-2166-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043948216", 
              "https://doi.org/10.1007/s00122-013-2166-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0061228", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045446339"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-014-1167-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046405663", 
              "https://doi.org/10.1007/s10681-014-1167-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-014-1167-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046405663", 
              "https://doi.org/10.1007/s10681-014-1167-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-006-0295-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047109541", 
              "https://doi.org/10.1007/s00122-006-0295-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-006-0295-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047109541", 
              "https://doi.org/10.1007/s00122-006-0295-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1438-8677.2008.00182.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048272411"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-003-1445-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049116493", 
              "https://doi.org/10.1007/s00122-003-1445-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-003-1445-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049116493", 
              "https://doi.org/10.1007/s00122-003-1445-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1439-0434.1999.tb03850.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049165579"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-011-1695-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049424694", 
              "https://doi.org/10.1007/s00122-011-1695-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-011-1703-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050112215", 
              "https://doi.org/10.1007/s00122-011-1703-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1094/pdis-92-11-1577", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060093426"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1094/pdis-92-11-1577", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060093426"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1094/phyto-02-16-0080-fi", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060098986"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1094/phyto-98-7-0776", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060100687"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.17660/actahortic.2003.603.57", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068405545"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-017-0644-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085075080", 
              "https://doi.org/10.1007/s11032-017-0644-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-017-0644-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085075080", 
              "https://doi.org/10.1007/s11032-017-0644-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-018-3065-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100896555", 
              "https://doi.org/10.1007/s00122-018-3065-y"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-01", 
        "datePublishedReg": "2019-01-01", 
        "description": "KEY MESSAGE: A major QTL for downy mildew resistance was detected on chromosome 18 (Rpv27) in Vitis aestivalis-derived 'Norton' based on a high-resolution linkage map with SNP and SSR markers as well as 2\u00a0years of field and laboratory phenotyping data. Grapevine downy mildew caused by the oomycete Plasmopara viticola is one of the most widespread and destructive diseases, particularly in humid viticultural areas where it damages green tissues and defoliates vines. Traditional Vitis vinifera wine grape cultivars are susceptible to downy mildew whereas several North American and a few Asian cultivars possess various levels of resistance to this disease. To identify genetic determinants of downy mildew resistance in V. aestivalis-derived 'Norton,' a mapping population with 182 genotypes was developed from a cross between 'Norton' and V. vinifera 'Cabernet Sauvignon' from which a consensus map was constructed via 411 simple sequence repeat (SSR) markers. Using genotyping-by-sequencing, 3825 single nucleotide polymorphism (SNP) markers were also generated. Of these, 1665 SNP and 407 SSR markers were clustered into 19 linkage groups in 159 genotypes, spanning a genetic distance of 2203.5\u00a0cM. Disease progression in response to P. viticola was studied in this population for 2\u00a0years under both laboratory and field conditions, and strong correlations were observed among data sets (Spearman correlation coefficient\u2009=\u20090.57-0.79). A quantitative trait loci (QTL) analysis indicated a resistance locus on chromosome 18, here named Rpv27, explaining 33.8% of the total phenotypic variation. Flanking markers closely linked with the trait can be further used for marker-assisted selection in the development of new cultivars with resistance to downy mildew.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00122-018-3203-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3821665", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3827810", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1135804", 
            "issn": [
              "0040-5752", 
              "1432-2242"
            ], 
            "name": "Theoretical and Applied Genetics", 
            "type": "Periodical"
          }
        ], 
        "name": "Construction of a high-density linkage map and QTL detection of downy mildew resistance in Vitis aestivalis-derived \u2018Norton\u2019", 
        "pagination": "1-11", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "452d5b423e1dcd35618a61751f2fe3f7c6dfb3d419e85bdf62ba43dc61039467"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30341491"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0145600"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00122-018-3203-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1107724681"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00122-018-3203-6", 
          "https://app.dimensions.ai/details/publication/pub.1107724681"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:51", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000566.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00122-018-3203-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00122-018-3203-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00122-018-3203-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00122-018-3203-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00122-018-3203-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    296 TRIPLES      21 PREDICATES      78 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00122-018-3203-6 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author Nc4d2f6cee930494da05c02cf60b196a6
    4 schema:citation sg:pub.10.1007/978-0-387-36011-9_4
    5 sg:pub.10.1007/s00122-003-1445-3
    6 sg:pub.10.1007/s00122-006-0295-1
    7 sg:pub.10.1007/s00122-009-0979-4
    8 sg:pub.10.1007/s00122-009-1167-2
    9 sg:pub.10.1007/s00122-011-1565-0
    10 sg:pub.10.1007/s00122-011-1695-4
    11 sg:pub.10.1007/s00122-011-1703-8
    12 sg:pub.10.1007/s00122-012-1942-3
    13 sg:pub.10.1007/s00122-013-2166-x
    14 sg:pub.10.1007/s00122-013-2202-x
    15 sg:pub.10.1007/s00122-018-3065-y
    16 sg:pub.10.1007/s00438-016-1200-5
    17 sg:pub.10.1007/s10681-014-1167-4
    18 sg:pub.10.1007/s11032-006-9047-9
    19 sg:pub.10.1007/s11032-007-9097-7
    20 sg:pub.10.1007/s11032-009-9363-y
    21 sg:pub.10.1007/s11032-017-0644-6
    22 sg:pub.10.1007/s11295-010-0322-x
    23 sg:pub.10.1007/s12038-012-9225-3
    24 sg:pub.10.1038/nature06148
    25 sg:pub.10.1038/nrg3012
    26 sg:pub.10.1038/srep16358
    27 sg:pub.10.1186/1471-2164-11-117
    28 sg:pub.10.1186/1471-2164-11-218
    29 sg:pub.10.1186/1471-2164-13-593
    30 sg:pub.10.1186/1471-2164-14-2
    31 sg:pub.10.1186/1471-2164-15-351
    32 sg:pub.10.1186/1471-2229-13-141
    33 https://doi.org/10.1016/j.scienta.2014.09.048
    34 https://doi.org/10.1016/s0065-2296(08)60074-9
    35 https://doi.org/10.1017/s0016672312000274
    36 https://doi.org/10.1080/09571264.2012.747087
    37 https://doi.org/10.1093/bioinformatics/btg112
    38 https://doi.org/10.1093/bioinformatics/btm308
    39 https://doi.org/10.1093/bioinformatics/btp324
    40 https://doi.org/10.1093/jhered/93.1.77
    41 https://doi.org/10.1094/pdis-92-11-1577
    42 https://doi.org/10.1094/phyto-02-16-0080-fi
    43 https://doi.org/10.1094/phyto-98-7-0776
    44 https://doi.org/10.1111/j.1438-8677.2008.00182.x
    45 https://doi.org/10.1111/j.1439-0434.1999.tb03850.x
    46 https://doi.org/10.1371/journal.pone.0019379
    47 https://doi.org/10.1371/journal.pone.0061228
    48 https://doi.org/10.1371/journal.pone.0080791
    49 https://doi.org/10.1371/journal.pone.0102448
    50 https://doi.org/10.1371/journal.pone.0134880
    51 https://doi.org/10.1371/journal.pone.0139406
    52 https://doi.org/10.17660/actahortic.2003.603.57
    53 https://doi.org/10.3389/fpls.2014.00484
    54 https://doi.org/10.3389/fpls.2015.00367
    55 schema:datePublished 2019-01
    56 schema:datePublishedReg 2019-01-01
    57 schema:description KEY MESSAGE: A major QTL for downy mildew resistance was detected on chromosome 18 (Rpv27) in Vitis aestivalis-derived 'Norton' based on a high-resolution linkage map with SNP and SSR markers as well as 2 years of field and laboratory phenotyping data. Grapevine downy mildew caused by the oomycete Plasmopara viticola is one of the most widespread and destructive diseases, particularly in humid viticultural areas where it damages green tissues and defoliates vines. Traditional Vitis vinifera wine grape cultivars are susceptible to downy mildew whereas several North American and a few Asian cultivars possess various levels of resistance to this disease. To identify genetic determinants of downy mildew resistance in V. aestivalis-derived 'Norton,' a mapping population with 182 genotypes was developed from a cross between 'Norton' and V. vinifera 'Cabernet Sauvignon' from which a consensus map was constructed via 411 simple sequence repeat (SSR) markers. Using genotyping-by-sequencing, 3825 single nucleotide polymorphism (SNP) markers were also generated. Of these, 1665 SNP and 407 SSR markers were clustered into 19 linkage groups in 159 genotypes, spanning a genetic distance of 2203.5 cM. Disease progression in response to P. viticola was studied in this population for 2 years under both laboratory and field conditions, and strong correlations were observed among data sets (Spearman correlation coefficient = 0.57-0.79). A quantitative trait loci (QTL) analysis indicated a resistance locus on chromosome 18, here named Rpv27, explaining 33.8% of the total phenotypic variation. Flanking markers closely linked with the trait can be further used for marker-assisted selection in the development of new cultivars with resistance to downy mildew.
    58 schema:genre research_article
    59 schema:inLanguage en
    60 schema:isAccessibleForFree false
    61 schema:isPartOf sg:journal.1135804
    62 schema:name Construction of a high-density linkage map and QTL detection of downy mildew resistance in Vitis aestivalis-derived ‘Norton’
    63 schema:pagination 1-11
    64 schema:productId N4e556ea22b764dce931fadd8fa3beb58
    65 N5e3b1d3added4c6b8cddd5a144ad68f8
    66 N64c0eee90b9840ad83b482b063bdaecc
    67 N7b9c5aa17f0f4224870a51ad62cc522a
    68 N8aca29f3ea56466a987d50605ea6e8c3
    69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107724681
    70 https://doi.org/10.1007/s00122-018-3203-6
    71 schema:sdDatePublished 2019-04-10T16:51
    72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    73 schema:sdPublisher N73f80d08b1754539bfd05fe21069bc71
    74 schema:url https://link.springer.com/10.1007%2Fs00122-018-3203-6
    75 sgo:license sg:explorer/license/
    76 sgo:sdDataset articles
    77 rdf:type schema:ScholarlyArticle
    78 N22711d48f1364f12b9f6fe56dd136a56 rdf:first sg:person.01307254657.30
    79 rdf:rest Nf2bbe5055a92425bbc3e9fb0c02f49c3
    80 N4e556ea22b764dce931fadd8fa3beb58 schema:name doi
    81 schema:value 10.1007/s00122-018-3203-6
    82 rdf:type schema:PropertyValue
    83 N5dc75faa6c12492b8629e3b4f791c1a1 rdf:first sg:person.0660671434.75
    84 rdf:rest Ne07388bd36ae483aa8d91851c8efbf07
    85 N5e3b1d3added4c6b8cddd5a144ad68f8 schema:name pubmed_id
    86 schema:value 30341491
    87 rdf:type schema:PropertyValue
    88 N64c0eee90b9840ad83b482b063bdaecc schema:name dimensions_id
    89 schema:value pub.1107724681
    90 rdf:type schema:PropertyValue
    91 N73f80d08b1754539bfd05fe21069bc71 schema:name Springer Nature - SN SciGraph project
    92 rdf:type schema:Organization
    93 N7b9c5aa17f0f4224870a51ad62cc522a schema:name nlm_unique_id
    94 schema:value 0145600
    95 rdf:type schema:PropertyValue
    96 N8aca29f3ea56466a987d50605ea6e8c3 schema:name readcube_id
    97 schema:value 452d5b423e1dcd35618a61751f2fe3f7c6dfb3d419e85bdf62ba43dc61039467
    98 rdf:type schema:PropertyValue
    99 Nc4d2f6cee930494da05c02cf60b196a6 rdf:first sg:person.010220104637.53
    100 rdf:rest Nc8f7cbaf26f149c98e16397aa72dd970
    101 Nc8f7cbaf26f149c98e16397aa72dd970 rdf:first sg:person.015273773234.06
    102 rdf:rest N22711d48f1364f12b9f6fe56dd136a56
    103 Ne07388bd36ae483aa8d91851c8efbf07 rdf:first sg:person.0770361142.24
    104 rdf:rest rdf:nil
    105 Nf2bbe5055a92425bbc3e9fb0c02f49c3 rdf:first sg:person.01030754617.88
    106 rdf:rest N5dc75faa6c12492b8629e3b4f791c1a1
    107 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Biological Sciences
    109 rdf:type schema:DefinedTerm
    110 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Genetics
    112 rdf:type schema:DefinedTerm
    113 sg:grant.3821665 http://pending.schema.org/fundedItem sg:pub.10.1007/s00122-018-3203-6
    114 rdf:type schema:MonetaryGrant
    115 sg:grant.3827810 http://pending.schema.org/fundedItem sg:pub.10.1007/s00122-018-3203-6
    116 rdf:type schema:MonetaryGrant
    117 sg:journal.1135804 schema:issn 0040-5752
    118 1432-2242
    119 schema:name Theoretical and Applied Genetics
    120 rdf:type schema:Periodical
    121 sg:person.010220104637.53 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
    122 schema:familyName Sapkota
    123 schema:givenName Surya
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010220104637.53
    125 rdf:type schema:Person
    126 sg:person.01030754617.88 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
    127 schema:familyName Hyma
    128 schema:givenName Katie E.
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030754617.88
    130 rdf:type schema:Person
    131 sg:person.01307254657.30 schema:affiliation https://www.grid.ac/institutes/grid.215654.1
    132 schema:familyName Yang
    133 schema:givenName Shanshan
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307254657.30
    135 rdf:type schema:Person
    136 sg:person.015273773234.06 schema:affiliation https://www.grid.ac/institutes/grid.260126.1
    137 schema:familyName Chen
    138 schema:givenName Li-Ling
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015273773234.06
    140 rdf:type schema:Person
    141 sg:person.0660671434.75 schema:affiliation https://www.grid.ac/institutes/grid.463419.d
    142 schema:familyName Cadle-Davidson
    143 schema:givenName Lance
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660671434.75
    145 rdf:type schema:Person
    146 sg:person.0770361142.24 schema:affiliation https://www.grid.ac/institutes/grid.260126.1
    147 schema:familyName Hwang
    148 schema:givenName Chin-Feng
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770361142.24
    150 rdf:type schema:Person
    151 sg:pub.10.1007/978-0-387-36011-9_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039143094
    152 https://doi.org/10.1007/978-0-387-36011-9_4
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/s00122-003-1445-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049116493
    155 https://doi.org/10.1007/s00122-003-1445-3
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/s00122-006-0295-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047109541
    158 https://doi.org/10.1007/s00122-006-0295-1
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/s00122-009-0979-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032124912
    161 https://doi.org/10.1007/s00122-009-0979-4
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/s00122-009-1167-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020261521
    164 https://doi.org/10.1007/s00122-009-1167-2
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/s00122-011-1565-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031810479
    167 https://doi.org/10.1007/s00122-011-1565-0
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/s00122-011-1695-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049424694
    170 https://doi.org/10.1007/s00122-011-1695-4
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/s00122-011-1703-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050112215
    173 https://doi.org/10.1007/s00122-011-1703-8
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/s00122-012-1942-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023583787
    176 https://doi.org/10.1007/s00122-012-1942-3
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/s00122-013-2166-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043948216
    179 https://doi.org/10.1007/s00122-013-2166-x
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s00122-013-2202-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042096665
    182 https://doi.org/10.1007/s00122-013-2202-x
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s00122-018-3065-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1100896555
    185 https://doi.org/10.1007/s00122-018-3065-y
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s00438-016-1200-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005930552
    188 https://doi.org/10.1007/s00438-016-1200-5
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/s10681-014-1167-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046405663
    191 https://doi.org/10.1007/s10681-014-1167-4
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/s11032-006-9047-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021042206
    194 https://doi.org/10.1007/s11032-006-9047-9
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/s11032-007-9097-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009344109
    197 https://doi.org/10.1007/s11032-007-9097-7
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s11032-009-9363-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1038877854
    200 https://doi.org/10.1007/s11032-009-9363-y
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s11032-017-0644-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085075080
    203 https://doi.org/10.1007/s11032-017-0644-6
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s11295-010-0322-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016816211
    206 https://doi.org/10.1007/s11295-010-0322-x
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/s12038-012-9225-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011529530
    209 https://doi.org/10.1007/s12038-012-9225-3
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/nature06148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040664071
    212 https://doi.org/10.1038/nature06148
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/nrg3012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034382223
    215 https://doi.org/10.1038/nrg3012
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/srep16358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030421109
    218 https://doi.org/10.1038/srep16358
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1186/1471-2164-11-117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035738727
    221 https://doi.org/10.1186/1471-2164-11-117
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1186/1471-2164-11-218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005950875
    224 https://doi.org/10.1186/1471-2164-11-218
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1186/1471-2164-13-593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015465180
    227 https://doi.org/10.1186/1471-2164-13-593
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1186/1471-2164-14-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038801448
    230 https://doi.org/10.1186/1471-2164-14-2
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1186/1471-2164-15-351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017283571
    233 https://doi.org/10.1186/1471-2164-15-351
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1186/1471-2229-13-141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040566935
    236 https://doi.org/10.1186/1471-2229-13-141
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1016/j.scienta.2014.09.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015325584
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1016/s0065-2296(08)60074-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026131716
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1017/s0016672312000274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023507834
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1080/09571264.2012.747087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017168126
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1093/bioinformatics/btg112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019414948
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1093/bioinformatics/btm308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028217957
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1093/bioinformatics/btp324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038266369
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1093/jhered/93.1.77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035613632
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1094/pdis-92-11-1577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060093426
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1094/phyto-02-16-0080-fi schema:sameAs https://app.dimensions.ai/details/publication/pub.1060098986
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1094/phyto-98-7-0776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060100687
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1111/j.1438-8677.2008.00182.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048272411
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1111/j.1439-0434.1999.tb03850.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049165579
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1371/journal.pone.0019379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005754650
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1371/journal.pone.0061228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045446339
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1371/journal.pone.0080791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031412656
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1371/journal.pone.0102448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007228075
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1371/journal.pone.0134880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033649195
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1371/journal.pone.0139406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005257524
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.17660/actahortic.2003.603.57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068405545
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.3389/fpls.2014.00484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015293823
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.3389/fpls.2015.00367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010972917
    281 rdf:type schema:CreativeWork
    282 https://www.grid.ac/institutes/grid.215654.1 schema:alternateName Arizona State University
    283 schema:name Bioinformatics Core Facility, The Biodesign Institute, Arizona State University, 85287-5001, Tempe, AZ, USA
    284 rdf:type schema:Organization
    285 https://www.grid.ac/institutes/grid.260126.1 schema:alternateName Missouri State University
    286 schema:name State Fruit Experiment Station at Mountain Grove Campus, Darr College of Agriculture, Missouri State University, 65897, Springfield, MO, USA
    287 rdf:type schema:Organization
    288 https://www.grid.ac/institutes/grid.463419.d schema:alternateName Agricultural Research Service
    289 schema:name USDA-ARS Grape Genetics Research Unit, 14456, Geneva, NY, USA
    290 rdf:type schema:Organization
    291 https://www.grid.ac/institutes/grid.5386.8 schema:alternateName Cornell University
    292 schema:name Bioinformatics Facility, Institute of Biotechnology, Cornell University, 14853, Ithaca, NY, USA
    293 Division of Plant Sciences, University of Missouri, 65211, Columbia, MO, USA
    294 Plant Pathology and Plant Microbe Biology Section, School of Integrative Plant Science, NYS Agricultural Experiment Station, Cornell University, 14456, Geneva, NY, USA
    295 State Fruit Experiment Station at Mountain Grove Campus, Darr College of Agriculture, Missouri State University, 65897, Springfield, MO, USA
    296 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...