Automated tetraploid genotype calling by hierarchical clustering View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-04

AUTHORS

Cari A. Schmitz Carley, Joseph J. Coombs, David S. Douches, Paul C. Bethke, Jiwan P. Palta, Richard G. Novy, Jeffrey B. Endelman

ABSTRACT

KEY MESSAGE: New software to make tetraploid genotype calls from SNP array data was developed, which uses hierarchical clustering and multiple F1 populations to calibrate the relationship between signal intensity and allele dosage. SNP arrays are transforming breeding and genetics research for autotetraploids. To fully utilize these arrays, the relationship between signal intensity and allele dosage must be calibrated for each marker. We developed an improved computational method to automate this process, which is provided as the R package ClusterCall. In the training phase of the algorithm, hierarchical clustering within an F1 population is used to group samples with similar intensity values, and allele dosages are assigned to clusters based on expected segregation ratios. In the prediction phase, multiple F1 populations and the prediction set are clustered together, and the genotype for each cluster is the mode of the training set samples. A concordance metric, defined as the proportion of training set samples equal to the mode, can be used to eliminate unreliable markers and compare different algorithms. Across three potato families genotyped with an 8K SNP array, ClusterCall scored 5729 markers with at least 0.95 concordance (94.6% of its total), compared to 5325 with the software fitTetra (82.5% of its total). The three families were used to predict genotypes for 5218 SNPs in the SolCAP diversity panel, compared with 3521 SNPs in a previous study in which genotypes were called manually. One of the additional markers produced a significant association for vine maturity near a well-known causal locus on chromosome 5. In conclusion, when multiple F1 populations are available, ClusterCall is an efficient method for accurate, autotetraploid genotype calling that enables the use of SNP data for research and plant breeding. More... »

PAGES

717-726

References to SciGraph publications

  • 2015-12. Development and analysis of a 20K SNP array for potato (Solanum tuberosum): an insight into the breeding history in THEORETICAL AND APPLIED GENETICS
  • 2011-07-10. Genome sequence and analysis of the tuber crop potato in NATURE
  • 2008-01. QTL mapping of yield, agronomic and quality traits in tetraploid potato (Solanum tuberosum subsp. tuberosum) in THEORETICAL AND APPLIED GENETICS
  • 2002. Modern Applied Statistics with S in NONE
  • 2005-04. Inheritance and genetic mapping of tuber eye depth in cultivated diploid potatoes in THEORETICAL AND APPLIED GENETICS
  • 1999-11. A molecular marker linkage map of tetraploid alfalfa (Medicago sativa L.) in THEORETICAL AND APPLIED GENETICS
  • 1936-04. Segregation and linkage in autotetraploids in JOURNAL OF GENETICS
  • 1989-08. Tetrasomic inheritance of isoenzyme markers in the highbush blueberry, Vaccinium corymbosum L.1 in HEREDITY
  • 1992-01. The detection and estimation of linkage in polyploids using single-dose restriction fragments in THEORETICAL AND APPLIED GENETICS
  • 1998-06. Autotetraploids and genetic mapping using common AFLP markers: the R2 allele conferring resistance to Phytophthora infestans mapped on potato chromosome 4 in THEORETICAL AND APPLIED GENETICS
  • 2013-03. Naturally occurring allele diversity allows potato cultivation in northern latitudes in NATURE
  • 2014-12. Identification and Selection for Tuber Calcium, Internal Quality and Pitted Scab in Segregating ‘Atlantic’ x ‘Superior’ Reciprocal Tetraploid Populations in AMERICAN JOURNAL OF POTATO RESEARCH
  • 2011-12. Genotype calling in tetraploid species from bi-allelic marker data using mixture models in BMC BIOINFORMATICS
  • 2014-12. The Contribution of the Solanaceae Coordinated Agricultural Project to Potato Breeding in POTATO RESEARCH
  • 2016-05. Genetic mapping with an inbred line-derived F2 population in potato in THEORETICAL AND APPLIED GENETICS
  • 2011-12. Single nucleotide polymorphism discovery in elite north american potato germplasm in BMC GENOMICS
  • 2005-11. The advantages and disadvantages of being polyploid in NATURE REVIEWS GENETICS
  • 1996-02. Meiosis in the leek (Allium porrum L.) revisited. II. Metaphase I observations in HEREDITY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00122-016-2845-5

    DOI

    http://dx.doi.org/10.1007/s00122-016-2845-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1022279302

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28070610


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Alleles", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cluster Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Dosage", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymorphism, Single Nucleotide", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Software", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Solanum tuberosum", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tetraploidy", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Wisconsin\u2013Madison", 
              "id": "https://www.grid.ac/institutes/grid.14003.36", 
              "name": [
                "Department of Horticulture, University of Wisconsin, 53706, Madison, WI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schmitz Carley", 
            "givenName": "Cari A.", 
            "id": "sg:person.011175351150.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011175351150.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Michigan State University", 
              "id": "https://www.grid.ac/institutes/grid.17088.36", 
              "name": [
                "Department of Plant, Soil and Microbial Sciences, Michigan State University, 48824, East Lansing, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Coombs", 
            "givenName": "Joseph J.", 
            "id": "sg:person.01304552367.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304552367.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Michigan State University", 
              "id": "https://www.grid.ac/institutes/grid.17088.36", 
              "name": [
                "Department of Plant, Soil and Microbial Sciences, Michigan State University, 48824, East Lansing, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Douches", 
            "givenName": "David S.", 
            "id": "sg:person.01106566463.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106566463.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Agricultural Research Service", 
              "id": "https://www.grid.ac/institutes/grid.463419.d", 
              "name": [
                "Department of Horticulture, University of Wisconsin, 53706, Madison, WI, USA", 
                "USDA Agricultural Research Service, 53706, Madison, WI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bethke", 
            "givenName": "Paul C.", 
            "id": "sg:person.011203316124.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011203316124.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Wisconsin\u2013Madison", 
              "id": "https://www.grid.ac/institutes/grid.14003.36", 
              "name": [
                "Department of Horticulture, University of Wisconsin, 53706, Madison, WI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Palta", 
            "givenName": "Jiwan P.", 
            "id": "sg:person.012400045565.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012400045565.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "USDA\u2013ARS Small Grains and Potato Germplasm Research Unit, 83210, Aberdeen, ID, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Novy", 
            "givenName": "Richard G.", 
            "id": "sg:person.01165647032.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165647032.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Wisconsin\u2013Madison", 
              "id": "https://www.grid.ac/institutes/grid.14003.36", 
              "name": [
                "Department of Horticulture, University of Wisconsin, 53706, Madison, WI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Endelman", 
            "givenName": "Jeffrey B.", 
            "id": "sg:person.01223156324.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223156324.11"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s001220051324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001810372", 
              "https://doi.org/10.1007/s001220051324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001220051324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001810372", 
              "https://doi.org/10.1007/s001220051324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002525491", 
              "https://doi.org/10.1038/nature10158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0036347", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010067122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0084329", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013774766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.113.007153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015216077"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.113.007153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015216077"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.106.060905", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015430152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.106.060905", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015430152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3732/ajb.1400119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018289118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1711", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022197221", 
              "https://doi.org/10.1038/nrg1711"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1711", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022197221", 
              "https://doi.org/10.1038/nrg1711"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-005-1927-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022712622", 
              "https://doi.org/10.1007/s00122-005-1927-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-005-1927-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022712622", 
              "https://doi.org/10.1007/s00122-005-1927-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-172", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023859609", 
              "https://doi.org/10.1186/1471-2105-12-172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.113.005595", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024643451"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.113.005595", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024643451"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02982683", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026414479", 
              "https://doi.org/10.1007/bf02982683"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02982683", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026414479", 
              "https://doi.org/10.1007/bf02982683"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hdy.1996.26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026441870", 
              "https://doi.org/10.1038/hdy.1996.26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hdy.1996.26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026441870", 
              "https://doi.org/10.1038/hdy.1996.26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.115.174607", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026452186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.115.174607", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026452186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12230-014-9399-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026729957", 
              "https://doi.org/10.1007/s12230-014-9399-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11912", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028617168", 
              "https://doi.org/10.1038/nature11912"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.114.012245", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030496433"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.114.012245", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030496433"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001220050847", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031622725", 
              "https://doi.org/10.1007/s001220050847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001220050847", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031622725", 
              "https://doi.org/10.1007/s001220050847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1035613449", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-21706-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035613449", 
              "https://doi.org/10.1007/978-0-387-21706-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-21706-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035613449", 
              "https://doi.org/10.1007/978-0-387-21706-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0062355", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036478933"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0030906", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038424463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-12-302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040483023", 
              "https://doi.org/10.1186/1471-2164-12-302"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11540-014-9267-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043025105", 
              "https://doi.org/10.1007/s11540-014-9267-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-015-2593-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044288136", 
              "https://doi.org/10.1007/s00122-015-2593-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-015-2593-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044288136", 
              "https://doi.org/10.1007/s00122-015-2593-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fpls.2015.00249", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045973466"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-007-0659-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046504212", 
              "https://doi.org/10.1007/s00122-007-0659-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-007-0659-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046504212", 
              "https://doi.org/10.1007/s00122-007-0659-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0063939", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047437701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-016-2673-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047829188", 
              "https://doi.org/10.1007/s00122-016-2673-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1360-1385(97)01154-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048329928"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00224274", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049435767", 
              "https://doi.org/10.1007/bf00224274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hdy.1989.70", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050878636", 
              "https://doi.org/10.1038/hdy.1989.70"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hdy.1989.70", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050878636", 
              "https://doi.org/10.1038/hdy.1989.70"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.115.181008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067739478"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.115.181008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067739478"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.115.181008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067739478"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.115.185579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067739567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.115.185579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067739567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.115.185579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067739567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.115.185579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067739567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3835/plantgenome2015.08.0073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071447977"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074780098", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077356010", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082563105", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-04", 
        "datePublishedReg": "2017-04-01", 
        "description": "KEY MESSAGE: New software to make tetraploid genotype calls from SNP array data was developed, which uses hierarchical clustering and multiple F1 populations to calibrate the relationship between signal intensity and allele dosage. SNP arrays are transforming breeding and genetics research for autotetraploids. To fully utilize these arrays, the relationship between signal intensity and allele dosage must be calibrated for each marker. We developed an improved computational method to automate this process, which is provided as the R package ClusterCall. In the training phase of the algorithm, hierarchical clustering within an F1 population is used to group samples with similar intensity values, and allele dosages are assigned to clusters based on expected segregation ratios. In the prediction phase, multiple F1 populations and the prediction set are clustered together, and the genotype for each cluster is the mode of the training set samples. A concordance metric, defined as the proportion of training set samples equal to the mode, can be used to eliminate unreliable markers and compare different algorithms. Across three potato families genotyped with an 8K SNP array, ClusterCall scored 5729 markers with at least 0.95 concordance (94.6% of its total), compared to 5325 with the software fitTetra (82.5% of its total). The three families were used to predict genotypes for 5218 SNPs in the SolCAP diversity panel, compared with 3521 SNPs in a previous study in which genotypes were called manually. One of the additional markers produced a significant association for vine maturity near a well-known causal locus on chromosome 5. In conclusion, when multiple F1 populations are available, ClusterCall is an efficient method for accurate, autotetraploid genotype calling that enables the use of SNP data for research and plant breeding.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00122-016-2845-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3948731", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3948384", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1135804", 
            "issn": [
              "0040-5752", 
              "1432-2242"
            ], 
            "name": "Theoretical and Applied Genetics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "130"
          }
        ], 
        "name": "Automated tetraploid genotype calling by hierarchical clustering", 
        "pagination": "717-726", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6a24a780b2aaa230089b89b66924b2ec5bd43320e5667b2cbbe4635e58f5abd2"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28070610"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0145600"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00122-016-2845-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1022279302"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00122-016-2845-5", 
          "https://app.dimensions.ai/details/publication/pub.1022279302"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89801_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00122-016-2845-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00122-016-2845-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00122-016-2845-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00122-016-2845-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00122-016-2845-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    288 TRIPLES      21 PREDICATES      76 URIs      30 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00122-016-2845-5 schema:about N0946150022bf4248a806325ec4cedb71
    2 N484a1af54e004b6895537145177d4d34
    3 N48c2e09b115c415998143db305f699c7
    4 N8b8615cbe92f405fb7b1e088e84059e5
    5 Nce1a9f1742c04ebdb7cbc744faf15059
    6 Ncf368999487e44de990bce5455e500a7
    7 Ne4e8944200a84718a430ada0030f67bc
    8 Ne9fa536ec2a64bcca0c8381de034f4a5
    9 Nf439b4d560db48a38d31c5bdd4c8897b
    10 anzsrc-for:06
    11 anzsrc-for:0604
    12 schema:author Nffb47727e916485f9e40b352d1b5188d
    13 schema:citation sg:pub.10.1007/978-0-387-21706-2
    14 sg:pub.10.1007/bf00224274
    15 sg:pub.10.1007/bf02982683
    16 sg:pub.10.1007/s00122-005-1927-6
    17 sg:pub.10.1007/s00122-007-0659-1
    18 sg:pub.10.1007/s00122-015-2593-y
    19 sg:pub.10.1007/s00122-016-2673-7
    20 sg:pub.10.1007/s001220050847
    21 sg:pub.10.1007/s001220051324
    22 sg:pub.10.1007/s11540-014-9267-z
    23 sg:pub.10.1007/s12230-014-9399-3
    24 sg:pub.10.1038/hdy.1989.70
    25 sg:pub.10.1038/hdy.1996.26
    26 sg:pub.10.1038/nature10158
    27 sg:pub.10.1038/nature11912
    28 sg:pub.10.1038/nrg1711
    29 sg:pub.10.1186/1471-2105-12-172
    30 sg:pub.10.1186/1471-2164-12-302
    31 https://app.dimensions.ai/details/publication/pub.1035613449
    32 https://app.dimensions.ai/details/publication/pub.1074780098
    33 https://app.dimensions.ai/details/publication/pub.1077356010
    34 https://app.dimensions.ai/details/publication/pub.1082563105
    35 https://doi.org/10.1016/s1360-1385(97)01154-0
    36 https://doi.org/10.1371/journal.pone.0030906
    37 https://doi.org/10.1371/journal.pone.0036347
    38 https://doi.org/10.1371/journal.pone.0062355
    39 https://doi.org/10.1371/journal.pone.0063939
    40 https://doi.org/10.1371/journal.pone.0084329
    41 https://doi.org/10.1534/g3.113.005595
    42 https://doi.org/10.1534/g3.113.007153
    43 https://doi.org/10.1534/g3.114.012245
    44 https://doi.org/10.1534/genetics.106.060905
    45 https://doi.org/10.1534/genetics.115.174607
    46 https://doi.org/10.1534/genetics.115.181008
    47 https://doi.org/10.1534/genetics.115.185579
    48 https://doi.org/10.3389/fpls.2015.00249
    49 https://doi.org/10.3732/ajb.1400119
    50 https://doi.org/10.3835/plantgenome2015.08.0073
    51 schema:datePublished 2017-04
    52 schema:datePublishedReg 2017-04-01
    53 schema:description KEY MESSAGE: New software to make tetraploid genotype calls from SNP array data was developed, which uses hierarchical clustering and multiple F1 populations to calibrate the relationship between signal intensity and allele dosage. SNP arrays are transforming breeding and genetics research for autotetraploids. To fully utilize these arrays, the relationship between signal intensity and allele dosage must be calibrated for each marker. We developed an improved computational method to automate this process, which is provided as the R package ClusterCall. In the training phase of the algorithm, hierarchical clustering within an F1 population is used to group samples with similar intensity values, and allele dosages are assigned to clusters based on expected segregation ratios. In the prediction phase, multiple F1 populations and the prediction set are clustered together, and the genotype for each cluster is the mode of the training set samples. A concordance metric, defined as the proportion of training set samples equal to the mode, can be used to eliminate unreliable markers and compare different algorithms. Across three potato families genotyped with an 8K SNP array, ClusterCall scored 5729 markers with at least 0.95 concordance (94.6% of its total), compared to 5325 with the software fitTetra (82.5% of its total). The three families were used to predict genotypes for 5218 SNPs in the SolCAP diversity panel, compared with 3521 SNPs in a previous study in which genotypes were called manually. One of the additional markers produced a significant association for vine maturity near a well-known causal locus on chromosome 5. In conclusion, when multiple F1 populations are available, ClusterCall is an efficient method for accurate, autotetraploid genotype calling that enables the use of SNP data for research and plant breeding.
    54 schema:genre research_article
    55 schema:inLanguage en
    56 schema:isAccessibleForFree false
    57 schema:isPartOf N3fccb9b81a60432d9e642e3b1396a643
    58 Nc097769ad95140dabecf270624e852d0
    59 sg:journal.1135804
    60 schema:name Automated tetraploid genotype calling by hierarchical clustering
    61 schema:pagination 717-726
    62 schema:productId N3498f60be4e54209846b9f19d67e1ebb
    63 Nc213532059f74464b066bb89a0a8e9d7
    64 Ne8c58afceafe4237a50ea3eb7449a1d5
    65 Nf5ddb6c38899405abf40786f03b88fda
    66 Nfbf33dc1102d4d3ab68f200f2e959f1a
    67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022279302
    68 https://doi.org/10.1007/s00122-016-2845-5
    69 schema:sdDatePublished 2019-04-11T09:55
    70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    71 schema:sdPublisher N6deb25a3ab4d4d6ca7ef061881aff2fc
    72 schema:url https://link.springer.com/10.1007%2Fs00122-016-2845-5
    73 sgo:license sg:explorer/license/
    74 sgo:sdDataset articles
    75 rdf:type schema:ScholarlyArticle
    76 N0865c490d0fa4d0cb65d7f351e15c559 rdf:first sg:person.012400045565.06
    77 rdf:rest Nfc51b273641e44db921b3a6a40853aca
    78 N0946150022bf4248a806325ec4cedb71 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    79 schema:name Solanum tuberosum
    80 rdf:type schema:DefinedTerm
    81 N3498f60be4e54209846b9f19d67e1ebb schema:name doi
    82 schema:value 10.1007/s00122-016-2845-5
    83 rdf:type schema:PropertyValue
    84 N3fccb9b81a60432d9e642e3b1396a643 schema:issueNumber 4
    85 rdf:type schema:PublicationIssue
    86 N47151e7b38e5479d9619f073a3bf31a6 rdf:first sg:person.01304552367.46
    87 rdf:rest N5aa455394e474770953bd7eb6385baa0
    88 N484a1af54e004b6895537145177d4d34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    89 schema:name Tetraploidy
    90 rdf:type schema:DefinedTerm
    91 N48c2e09b115c415998143db305f699c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    92 schema:name Cluster Analysis
    93 rdf:type schema:DefinedTerm
    94 N5aa455394e474770953bd7eb6385baa0 rdf:first sg:person.01106566463.22
    95 rdf:rest N866c77c7580d4c469a5704e8566adf22
    96 N6deb25a3ab4d4d6ca7ef061881aff2fc schema:name Springer Nature - SN SciGraph project
    97 rdf:type schema:Organization
    98 N866c77c7580d4c469a5704e8566adf22 rdf:first sg:person.011203316124.08
    99 rdf:rest N0865c490d0fa4d0cb65d7f351e15c559
    100 N8b8615cbe92f405fb7b1e088e84059e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Polymorphism, Single Nucleotide
    102 rdf:type schema:DefinedTerm
    103 Na2e125da23ee433d93156d67da9e6b68 schema:name USDA–ARS Small Grains and Potato Germplasm Research Unit, 83210, Aberdeen, ID, USA
    104 rdf:type schema:Organization
    105 Na8b89adc52eb4d25aa42524ebb992fff rdf:first sg:person.01223156324.11
    106 rdf:rest rdf:nil
    107 Nc097769ad95140dabecf270624e852d0 schema:volumeNumber 130
    108 rdf:type schema:PublicationVolume
    109 Nc213532059f74464b066bb89a0a8e9d7 schema:name readcube_id
    110 schema:value 6a24a780b2aaa230089b89b66924b2ec5bd43320e5667b2cbbe4635e58f5abd2
    111 rdf:type schema:PropertyValue
    112 Nce1a9f1742c04ebdb7cbc744faf15059 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Genotype
    114 rdf:type schema:DefinedTerm
    115 Ncf368999487e44de990bce5455e500a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Software
    117 rdf:type schema:DefinedTerm
    118 Ne4e8944200a84718a430ada0030f67bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Gene Dosage
    120 rdf:type schema:DefinedTerm
    121 Ne8c58afceafe4237a50ea3eb7449a1d5 schema:name dimensions_id
    122 schema:value pub.1022279302
    123 rdf:type schema:PropertyValue
    124 Ne9fa536ec2a64bcca0c8381de034f4a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Alleles
    126 rdf:type schema:DefinedTerm
    127 Nf439b4d560db48a38d31c5bdd4c8897b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Algorithms
    129 rdf:type schema:DefinedTerm
    130 Nf5ddb6c38899405abf40786f03b88fda schema:name nlm_unique_id
    131 schema:value 0145600
    132 rdf:type schema:PropertyValue
    133 Nfbf33dc1102d4d3ab68f200f2e959f1a schema:name pubmed_id
    134 schema:value 28070610
    135 rdf:type schema:PropertyValue
    136 Nfc51b273641e44db921b3a6a40853aca rdf:first sg:person.01165647032.87
    137 rdf:rest Na8b89adc52eb4d25aa42524ebb992fff
    138 Nffb47727e916485f9e40b352d1b5188d rdf:first sg:person.011175351150.16
    139 rdf:rest N47151e7b38e5479d9619f073a3bf31a6
    140 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    141 schema:name Biological Sciences
    142 rdf:type schema:DefinedTerm
    143 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Genetics
    145 rdf:type schema:DefinedTerm
    146 sg:grant.3948384 http://pending.schema.org/fundedItem sg:pub.10.1007/s00122-016-2845-5
    147 rdf:type schema:MonetaryGrant
    148 sg:grant.3948731 http://pending.schema.org/fundedItem sg:pub.10.1007/s00122-016-2845-5
    149 rdf:type schema:MonetaryGrant
    150 sg:journal.1135804 schema:issn 0040-5752
    151 1432-2242
    152 schema:name Theoretical and Applied Genetics
    153 rdf:type schema:Periodical
    154 sg:person.01106566463.22 schema:affiliation https://www.grid.ac/institutes/grid.17088.36
    155 schema:familyName Douches
    156 schema:givenName David S.
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106566463.22
    158 rdf:type schema:Person
    159 sg:person.011175351150.16 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
    160 schema:familyName Schmitz Carley
    161 schema:givenName Cari A.
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011175351150.16
    163 rdf:type schema:Person
    164 sg:person.011203316124.08 schema:affiliation https://www.grid.ac/institutes/grid.463419.d
    165 schema:familyName Bethke
    166 schema:givenName Paul C.
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011203316124.08
    168 rdf:type schema:Person
    169 sg:person.01165647032.87 schema:affiliation Na2e125da23ee433d93156d67da9e6b68
    170 schema:familyName Novy
    171 schema:givenName Richard G.
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165647032.87
    173 rdf:type schema:Person
    174 sg:person.01223156324.11 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
    175 schema:familyName Endelman
    176 schema:givenName Jeffrey B.
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223156324.11
    178 rdf:type schema:Person
    179 sg:person.012400045565.06 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
    180 schema:familyName Palta
    181 schema:givenName Jiwan P.
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012400045565.06
    183 rdf:type schema:Person
    184 sg:person.01304552367.46 schema:affiliation https://www.grid.ac/institutes/grid.17088.36
    185 schema:familyName Coombs
    186 schema:givenName Joseph J.
    187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304552367.46
    188 rdf:type schema:Person
    189 sg:pub.10.1007/978-0-387-21706-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035613449
    190 https://doi.org/10.1007/978-0-387-21706-2
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/bf00224274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049435767
    193 https://doi.org/10.1007/bf00224274
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/bf02982683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026414479
    196 https://doi.org/10.1007/bf02982683
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/s00122-005-1927-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022712622
    199 https://doi.org/10.1007/s00122-005-1927-6
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/s00122-007-0659-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046504212
    202 https://doi.org/10.1007/s00122-007-0659-1
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/s00122-015-2593-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1044288136
    205 https://doi.org/10.1007/s00122-015-2593-y
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/s00122-016-2673-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047829188
    208 https://doi.org/10.1007/s00122-016-2673-7
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/s001220050847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031622725
    211 https://doi.org/10.1007/s001220050847
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/s001220051324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001810372
    214 https://doi.org/10.1007/s001220051324
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/s11540-014-9267-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1043025105
    217 https://doi.org/10.1007/s11540-014-9267-z
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1007/s12230-014-9399-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026729957
    220 https://doi.org/10.1007/s12230-014-9399-3
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/hdy.1989.70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050878636
    223 https://doi.org/10.1038/hdy.1989.70
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/hdy.1996.26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026441870
    226 https://doi.org/10.1038/hdy.1996.26
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/nature10158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002525491
    229 https://doi.org/10.1038/nature10158
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/nature11912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028617168
    232 https://doi.org/10.1038/nature11912
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/nrg1711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022197221
    235 https://doi.org/10.1038/nrg1711
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1186/1471-2105-12-172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023859609
    238 https://doi.org/10.1186/1471-2105-12-172
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1186/1471-2164-12-302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040483023
    241 https://doi.org/10.1186/1471-2164-12-302
    242 rdf:type schema:CreativeWork
    243 https://app.dimensions.ai/details/publication/pub.1035613449 schema:CreativeWork
    244 https://app.dimensions.ai/details/publication/pub.1074780098 schema:CreativeWork
    245 https://app.dimensions.ai/details/publication/pub.1077356010 schema:CreativeWork
    246 https://app.dimensions.ai/details/publication/pub.1082563105 schema:CreativeWork
    247 https://doi.org/10.1016/s1360-1385(97)01154-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048329928
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1371/journal.pone.0030906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038424463
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1371/journal.pone.0036347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010067122
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1371/journal.pone.0062355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036478933
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1371/journal.pone.0063939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047437701
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1371/journal.pone.0084329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013774766
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1534/g3.113.005595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024643451
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1534/g3.113.007153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015216077
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1534/g3.114.012245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030496433
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1534/genetics.106.060905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015430152
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1534/genetics.115.174607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026452186
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1534/genetics.115.181008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067739478
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1534/genetics.115.185579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067739567
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.3389/fpls.2015.00249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045973466
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.3732/ajb.1400119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018289118
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.3835/plantgenome2015.08.0073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071447977
    278 rdf:type schema:CreativeWork
    279 https://www.grid.ac/institutes/grid.14003.36 schema:alternateName University of Wisconsin–Madison
    280 schema:name Department of Horticulture, University of Wisconsin, 53706, Madison, WI, USA
    281 rdf:type schema:Organization
    282 https://www.grid.ac/institutes/grid.17088.36 schema:alternateName Michigan State University
    283 schema:name Department of Plant, Soil and Microbial Sciences, Michigan State University, 48824, East Lansing, MI, USA
    284 rdf:type schema:Organization
    285 https://www.grid.ac/institutes/grid.463419.d schema:alternateName Agricultural Research Service
    286 schema:name Department of Horticulture, University of Wisconsin, 53706, Madison, WI, USA
    287 USDA Agricultural Research Service, 53706, Madison, WI, USA
    288 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...