Genetic dissection of seed weight by QTL analysis and detection of allelic variation in Indian and east European gene pool ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-02

AUTHORS

Namrata Dhaka, Kadambini Rout, Satish K. Yadava, Yaspal Singh Sodhi, Vibha Gupta, Deepak Pental, Akshay K. Pradhan

ABSTRACT

KEY MESSAGE: Seed weight QTL identified in different populations were synthesized into consensus QTL which were shown to harbor candidate genes by in silico mapping. Allelic variation inferred would be useful in breeding B. juncea lines with high seed weight. Seed weight is an important yield influencing trait in oilseed Brassicas and is a multigenic trait. Among the oilseed Brassicas, Brassica juncea harbors the maximum phenotypic variation wherein thousand seed weight varies from around 2.0 g to more than 7.0 g. In this study, we have undertaken quantitative trait locus/quantitative trait loci (QTL) analysis of seed weight in B. juncea using four bi-parental doubled-haploid populations. These four populations were derived from six lines (three Indian and three east European lines) with parental phenotypic values for thousand seed weight ranging from 2.0 to 7.6 g in different environments. Multi-environment QTL analysis of the four populations identified a total of 65 QTL ranging from 10 to 25 in each population. Meta-analysis of these component QTL of the four populations identified six 'consensus' QTL (C-QTL) in A3, A7, A10 and B3 by merging 33 of the 65 component Tsw QTL from different bi-parental populations. Allelic diversity analysis of these six C-QTL showed that Indian lines, Pusajaikisan and Varuna, hold the most positive allele in all the six C-QTL. In silico mapping of candidate genes with the consensus QTL localized 11 genes known to influence seed weight in Arabidopsis thaliana and also showed conserved crucifer blocks harboring seed weight QTL between the A subgenomes of B. juncea and B. rapa. These findings pave the way for a better understanding of the genetics of seed weight in the oilseed crop B. juncea and reveal the scope available for improvement of seed weight through marker-assisted breeding. More... »

PAGES

293-307

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00122-016-2811-2

DOI

http://dx.doi.org/10.1007/s00122-016-2811-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036327379

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27744489


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alleles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosome Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Consensus Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Epistasis, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Pool", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetics, Population", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Haploidy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mustard Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quantitative Trait Loci", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Seeds", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Delhi", 
          "id": "https://www.grid.ac/institutes/grid.8195.5", 
          "name": [
            "Department of Genetics, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dhaka", 
        "givenName": "Namrata", 
        "id": "sg:person.012703270251.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012703270251.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Delhi", 
          "id": "https://www.grid.ac/institutes/grid.8195.5", 
          "name": [
            "Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rout", 
        "givenName": "Kadambini", 
        "id": "sg:person.01327771536.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327771536.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Delhi", 
          "id": "https://www.grid.ac/institutes/grid.8195.5", 
          "name": [
            "Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yadava", 
        "givenName": "Satish K.", 
        "id": "sg:person.01017473354.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017473354.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Delhi", 
          "id": "https://www.grid.ac/institutes/grid.8195.5", 
          "name": [
            "Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sodhi", 
        "givenName": "Yaspal Singh", 
        "id": "sg:person.01074147016.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074147016.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Delhi", 
          "id": "https://www.grid.ac/institutes/grid.8195.5", 
          "name": [
            "Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gupta", 
        "givenName": "Vibha", 
        "id": "sg:person.0707106054.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707106054.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Delhi", 
          "id": "https://www.grid.ac/institutes/grid.8195.5", 
          "name": [
            "Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pental", 
        "givenName": "Deepak", 
        "id": "sg:person.01230565713.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230565713.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Delhi", 
          "id": "https://www.grid.ac/institutes/grid.8195.5", 
          "name": [
            "Department of Genetics, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India", 
            "Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pradhan", 
        "givenName": "Akshay K.", 
        "id": "sg:person.01137563054.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137563054.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00122-007-0610-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000587413", 
          "https://doi.org/10.1007/s00122-007-0610-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-007-0610-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000587413", 
          "https://doi.org/10.1007/s00122-007-0610-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-006-0413-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003326201", 
          "https://doi.org/10.1007/s00122-006-0413-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-006-0413-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003326201", 
          "https://doi.org/10.1007/s00122-006-0413-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.113.217703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010924199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11033-012-1808-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013211578", 
          "https://doi.org/10.1007/s11033-012-1808-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/eru125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014446486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0508418102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016104028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0509021102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016161259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00022368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016943654", 
          "https://doi.org/10.1007/bf00022368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00022368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016943654", 
          "https://doi.org/10.1007/bf00022368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-7118-0_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017081400", 
          "https://doi.org/10.1007/978-1-4419-7118-0_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-7118-0_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017081400", 
          "https://doi.org/10.1007/978-1-4419-7118-0_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/dnares/dss029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017271925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/pbr.12131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019540723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00344-013-9382-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020551385", 
          "https://doi.org/10.1007/s00344-013-9382-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tplants.2006.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021466974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-012-1934-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022239797", 
          "https://doi.org/10.1007/s00122-012-1934-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0147580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023193813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0147580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023193813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0147580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023193813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.108.064972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025108076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg3627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025596426", 
          "https://doi.org/10.1038/nrg3627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001220051635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026795799", 
          "https://doi.org/10.1007/s001220051635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001220051635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026795799", 
          "https://doi.org/10.1007/s001220051635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.96.8.4710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027009396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2229-14-114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028609878", 
          "https://doi.org/10.1186/1471-2229-14-114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029867719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/eru549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030430787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-294x.2012.05522.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033113663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-010-1388-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034292101", 
          "https://doi.org/10.1007/s00122-010-1388-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-010-1388-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034292101", 
          "https://doi.org/10.1007/s00122-010-1388-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035519342", 
          "https://doi.org/10.1038/ng.919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001220051433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036705836", 
          "https://doi.org/10.1007/s001220051433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001220051433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036705836", 
          "https://doi.org/10.1007/s001220051433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tplants.2014.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038320544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1071/ea05228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038570145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-015-2461-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043016375", 
          "https://doi.org/10.1007/s00122-015-2461-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-012-1833-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046864506", 
          "https://doi.org/10.1007/s00122-012-1833-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047038250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.104.027136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050256820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1746-4811-7-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052813181", 
          "https://doi.org/10.1186/1746-4811-7-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep14407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052843588", 
          "https://doi.org/10.1038/srep14407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fpls.2015.01032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053565078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bst20140040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056717628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bst20140040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056717628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2007.04.0191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069030309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4161/psb.25928", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072308128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074632808", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082535482", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082948111", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-02", 
    "datePublishedReg": "2017-02-01", 
    "description": "KEY MESSAGE: Seed weight QTL identified in different populations were synthesized into consensus QTL which were shown to harbor candidate genes by in silico mapping. Allelic variation inferred would be useful in breeding B. juncea lines with high seed weight. Seed weight is an important yield influencing trait in oilseed Brassicas and is a multigenic trait. Among the oilseed Brassicas, Brassica juncea harbors the maximum phenotypic variation wherein thousand seed weight varies from around 2.0\u00a0g to more than 7.0\u00a0g. In this study, we have undertaken quantitative trait locus/quantitative trait loci (QTL) analysis of seed weight in B. juncea using four bi-parental doubled-haploid populations. These four populations were derived from six lines (three Indian and three east European lines) with parental phenotypic values for thousand seed weight ranging from 2.0 to 7.6\u00a0g in different environments. Multi-environment QTL analysis of the four populations identified a total of 65 QTL ranging from 10 to 25 in each population. Meta-analysis of these component QTL of the four populations identified six 'consensus' QTL (C-QTL) in A3, A7, A10 and B3 by merging 33 of the 65 component Tsw QTL from different bi-parental populations. Allelic diversity analysis of these six C-QTL showed that Indian lines, Pusajaikisan and Varuna, hold the most positive allele in all the six C-QTL. In silico mapping of candidate genes with the consensus QTL localized 11 genes known to influence seed weight in Arabidopsis thaliana and also showed conserved crucifer blocks harboring seed weight QTL between the A subgenomes of B. juncea and B. rapa. These findings pave the way for a better understanding of the genetics of seed weight in the oilseed crop B. juncea and reveal the scope available for improvement of seed weight through marker-assisted breeding.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00122-016-2811-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135804", 
        "issn": [
          "0040-5752", 
          "1432-2242"
        ], 
        "name": "Theoretical and Applied Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "130"
      }
    ], 
    "name": "Genetic dissection of seed weight by QTL analysis and detection of allelic variation in Indian and east European gene pool lines of Brassica juncea", 
    "pagination": "293-307", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ad0c8f46fd93ae1505b7488fe8915120033455afa08c9998b1af1d992f85c04c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27744489"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0145600"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00122-016-2811-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036327379"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00122-016-2811-2", 
      "https://app.dimensions.ai/details/publication/pub.1036327379"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70046_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00122-016-2811-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00122-016-2811-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00122-016-2811-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00122-016-2811-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00122-016-2811-2'


 

This table displays all metadata directly associated to this object as RDF triples.

293 TRIPLES      21 PREDICATES      81 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00122-016-2811-2 schema:about N8d2d05eab7d04e3bb9ddd5c2a61836f2
2 N8d62cdf8dd304385a7ea8a6b69aad25f
3 N8dc4112d33b142f997ed8a843877b2c8
4 N997d45c62ff34e8db50b6618dbee99a7
5 N9d02807ceef04d5691d2cb88cb054f4d
6 N9e8f7e69b79144bcbe5e12e10a0c4455
7 Na71e924bbc0d4149bada8259c6fee019
8 Nb12c010a75d24bd6917251304f9e485d
9 Nc9f5f39d5410432a8bd980fb620e48e9
10 Ne23d9a59aeb44fcfa083ee01045522c3
11 Ne9aac63596a6498a9dc7f7f7a3697017
12 anzsrc-for:06
13 anzsrc-for:0604
14 schema:author N6792ccabcddf4aa6be1916e7177ca466
15 schema:citation sg:pub.10.1007/978-1-4419-7118-0_11
16 sg:pub.10.1007/bf00022368
17 sg:pub.10.1007/s00122-006-0413-0
18 sg:pub.10.1007/s00122-007-0610-5
19 sg:pub.10.1007/s00122-010-1388-4
20 sg:pub.10.1007/s00122-012-1833-7
21 sg:pub.10.1007/s00122-012-1934-3
22 sg:pub.10.1007/s00122-015-2461-9
23 sg:pub.10.1007/s001220051433
24 sg:pub.10.1007/s001220051635
25 sg:pub.10.1007/s00344-013-9382-0
26 sg:pub.10.1007/s11033-012-1808-4
27 sg:pub.10.1038/ng.919
28 sg:pub.10.1038/nrg3627
29 sg:pub.10.1038/srep14407
30 sg:pub.10.1186/1471-2229-14-114
31 sg:pub.10.1186/1746-4811-7-3
32 https://app.dimensions.ai/details/publication/pub.1074632808
33 https://app.dimensions.ai/details/publication/pub.1082535482
34 https://app.dimensions.ai/details/publication/pub.1082948111
35 https://doi.org/10.1016/j.tplants.2006.09.002
36 https://doi.org/10.1016/j.tplants.2014.01.001
37 https://doi.org/10.1042/bst20140040
38 https://doi.org/10.1071/ea05228
39 https://doi.org/10.1073/pnas.0508418102
40 https://doi.org/10.1073/pnas.0509021102
41 https://doi.org/10.1073/pnas.96.8.4710
42 https://doi.org/10.1093/bioinformatics/bth230
43 https://doi.org/10.1093/bioinformatics/btm143
44 https://doi.org/10.1093/dnares/dss029
45 https://doi.org/10.1093/jxb/eru125
46 https://doi.org/10.1093/jxb/eru549
47 https://doi.org/10.1104/pp.113.217703
48 https://doi.org/10.1105/tpc.104.027136
49 https://doi.org/10.1105/tpc.108.064972
50 https://doi.org/10.1111/j.1365-294x.2012.05522.x
51 https://doi.org/10.1111/pbr.12131
52 https://doi.org/10.1371/journal.pone.0147580
53 https://doi.org/10.2135/cropsci2007.04.0191
54 https://doi.org/10.3389/fpls.2015.01032
55 https://doi.org/10.4161/psb.25928
56 schema:datePublished 2017-02
57 schema:datePublishedReg 2017-02-01
58 schema:description KEY MESSAGE: Seed weight QTL identified in different populations were synthesized into consensus QTL which were shown to harbor candidate genes by in silico mapping. Allelic variation inferred would be useful in breeding B. juncea lines with high seed weight. Seed weight is an important yield influencing trait in oilseed Brassicas and is a multigenic trait. Among the oilseed Brassicas, Brassica juncea harbors the maximum phenotypic variation wherein thousand seed weight varies from around 2.0 g to more than 7.0 g. In this study, we have undertaken quantitative trait locus/quantitative trait loci (QTL) analysis of seed weight in B. juncea using four bi-parental doubled-haploid populations. These four populations were derived from six lines (three Indian and three east European lines) with parental phenotypic values for thousand seed weight ranging from 2.0 to 7.6 g in different environments. Multi-environment QTL analysis of the four populations identified a total of 65 QTL ranging from 10 to 25 in each population. Meta-analysis of these component QTL of the four populations identified six 'consensus' QTL (C-QTL) in A3, A7, A10 and B3 by merging 33 of the 65 component Tsw QTL from different bi-parental populations. Allelic diversity analysis of these six C-QTL showed that Indian lines, Pusajaikisan and Varuna, hold the most positive allele in all the six C-QTL. In silico mapping of candidate genes with the consensus QTL localized 11 genes known to influence seed weight in Arabidopsis thaliana and also showed conserved crucifer blocks harboring seed weight QTL between the A subgenomes of B. juncea and B. rapa. These findings pave the way for a better understanding of the genetics of seed weight in the oilseed crop B. juncea and reveal the scope available for improvement of seed weight through marker-assisted breeding.
59 schema:genre research_article
60 schema:inLanguage en
61 schema:isAccessibleForFree false
62 schema:isPartOf Nc35a3f48422148f8be1858f8c9a35f02
63 Ndea33324f9f842ddafd9c5f785b3c242
64 sg:journal.1135804
65 schema:name Genetic dissection of seed weight by QTL analysis and detection of allelic variation in Indian and east European gene pool lines of Brassica juncea
66 schema:pagination 293-307
67 schema:productId N03426296015f4460bff32e67f328f341
68 N5629b0d7f33d4b029511201705026993
69 N921c69d3269b4416bf26426a7cf0e230
70 Nce66136089fa4b409730d823bc8a88cd
71 Ned022052595b44358eaa1aecd091daee
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036327379
73 https://doi.org/10.1007/s00122-016-2811-2
74 schema:sdDatePublished 2019-04-11T12:39
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N976d3bca9d484a8f9a66a797a30573c7
77 schema:url https://link.springer.com/10.1007%2Fs00122-016-2811-2
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N0080b5df1e3940e5b8a14d165f3a3b29 rdf:first sg:person.0707106054.43
82 rdf:rest Nb3c93336a3ee497b8f6d15e48aab50f3
83 N03426296015f4460bff32e67f328f341 schema:name dimensions_id
84 schema:value pub.1036327379
85 rdf:type schema:PropertyValue
86 N0b5d01a347ec4daf9a85b5c57b7af914 rdf:first sg:person.01017473354.36
87 rdf:rest N8e9f383c4a3443368be7aa17dc630326
88 N4dc098a4b25f4929b77b1ff1e8669b94 rdf:first sg:person.01327771536.32
89 rdf:rest N0b5d01a347ec4daf9a85b5c57b7af914
90 N5629b0d7f33d4b029511201705026993 schema:name pubmed_id
91 schema:value 27744489
92 rdf:type schema:PropertyValue
93 N6792ccabcddf4aa6be1916e7177ca466 rdf:first sg:person.012703270251.10
94 rdf:rest N4dc098a4b25f4929b77b1ff1e8669b94
95 N8d2d05eab7d04e3bb9ddd5c2a61836f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Seeds
97 rdf:type schema:DefinedTerm
98 N8d62cdf8dd304385a7ea8a6b69aad25f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Gene Pool
100 rdf:type schema:DefinedTerm
101 N8dc4112d33b142f997ed8a843877b2c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Genetics, Population
103 rdf:type schema:DefinedTerm
104 N8e9f383c4a3443368be7aa17dc630326 rdf:first sg:person.01074147016.08
105 rdf:rest N0080b5df1e3940e5b8a14d165f3a3b29
106 N921c69d3269b4416bf26426a7cf0e230 schema:name readcube_id
107 schema:value ad0c8f46fd93ae1505b7488fe8915120033455afa08c9998b1af1d992f85c04c
108 rdf:type schema:PropertyValue
109 N976d3bca9d484a8f9a66a797a30573c7 schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 N997d45c62ff34e8db50b6618dbee99a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Alleles
113 rdf:type schema:DefinedTerm
114 N9d02807ceef04d5691d2cb88cb054f4d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Phenotype
116 rdf:type schema:DefinedTerm
117 N9e8f7e69b79144bcbe5e12e10a0c4455 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Haploidy
119 rdf:type schema:DefinedTerm
120 Na71e924bbc0d4149bada8259c6fee019 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Consensus Sequence
122 rdf:type schema:DefinedTerm
123 Na97751db6d6e4dcf9b302bb2dd6beb75 rdf:first sg:person.01137563054.00
124 rdf:rest rdf:nil
125 Nb12c010a75d24bd6917251304f9e485d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Mustard Plant
127 rdf:type schema:DefinedTerm
128 Nb3c93336a3ee497b8f6d15e48aab50f3 rdf:first sg:person.01230565713.24
129 rdf:rest Na97751db6d6e4dcf9b302bb2dd6beb75
130 Nc35a3f48422148f8be1858f8c9a35f02 schema:issueNumber 2
131 rdf:type schema:PublicationIssue
132 Nc9f5f39d5410432a8bd980fb620e48e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Chromosome Mapping
134 rdf:type schema:DefinedTerm
135 Nce66136089fa4b409730d823bc8a88cd schema:name nlm_unique_id
136 schema:value 0145600
137 rdf:type schema:PropertyValue
138 Ndea33324f9f842ddafd9c5f785b3c242 schema:volumeNumber 130
139 rdf:type schema:PublicationVolume
140 Ne23d9a59aeb44fcfa083ee01045522c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Epistasis, Genetic
142 rdf:type schema:DefinedTerm
143 Ne9aac63596a6498a9dc7f7f7a3697017 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Quantitative Trait Loci
145 rdf:type schema:DefinedTerm
146 Ned022052595b44358eaa1aecd091daee schema:name doi
147 schema:value 10.1007/s00122-016-2811-2
148 rdf:type schema:PropertyValue
149 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
150 schema:name Biological Sciences
151 rdf:type schema:DefinedTerm
152 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
153 schema:name Genetics
154 rdf:type schema:DefinedTerm
155 sg:journal.1135804 schema:issn 0040-5752
156 1432-2242
157 schema:name Theoretical and Applied Genetics
158 rdf:type schema:Periodical
159 sg:person.01017473354.36 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
160 schema:familyName Yadava
161 schema:givenName Satish K.
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017473354.36
163 rdf:type schema:Person
164 sg:person.01074147016.08 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
165 schema:familyName Sodhi
166 schema:givenName Yaspal Singh
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074147016.08
168 rdf:type schema:Person
169 sg:person.01137563054.00 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
170 schema:familyName Pradhan
171 schema:givenName Akshay K.
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137563054.00
173 rdf:type schema:Person
174 sg:person.01230565713.24 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
175 schema:familyName Pental
176 schema:givenName Deepak
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230565713.24
178 rdf:type schema:Person
179 sg:person.012703270251.10 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
180 schema:familyName Dhaka
181 schema:givenName Namrata
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012703270251.10
183 rdf:type schema:Person
184 sg:person.01327771536.32 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
185 schema:familyName Rout
186 schema:givenName Kadambini
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327771536.32
188 rdf:type schema:Person
189 sg:person.0707106054.43 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
190 schema:familyName Gupta
191 schema:givenName Vibha
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707106054.43
193 rdf:type schema:Person
194 sg:pub.10.1007/978-1-4419-7118-0_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017081400
195 https://doi.org/10.1007/978-1-4419-7118-0_11
196 rdf:type schema:CreativeWork
197 sg:pub.10.1007/bf00022368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016943654
198 https://doi.org/10.1007/bf00022368
199 rdf:type schema:CreativeWork
200 sg:pub.10.1007/s00122-006-0413-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003326201
201 https://doi.org/10.1007/s00122-006-0413-0
202 rdf:type schema:CreativeWork
203 sg:pub.10.1007/s00122-007-0610-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000587413
204 https://doi.org/10.1007/s00122-007-0610-5
205 rdf:type schema:CreativeWork
206 sg:pub.10.1007/s00122-010-1388-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034292101
207 https://doi.org/10.1007/s00122-010-1388-4
208 rdf:type schema:CreativeWork
209 sg:pub.10.1007/s00122-012-1833-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046864506
210 https://doi.org/10.1007/s00122-012-1833-7
211 rdf:type schema:CreativeWork
212 sg:pub.10.1007/s00122-012-1934-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022239797
213 https://doi.org/10.1007/s00122-012-1934-3
214 rdf:type schema:CreativeWork
215 sg:pub.10.1007/s00122-015-2461-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043016375
216 https://doi.org/10.1007/s00122-015-2461-9
217 rdf:type schema:CreativeWork
218 sg:pub.10.1007/s001220051433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036705836
219 https://doi.org/10.1007/s001220051433
220 rdf:type schema:CreativeWork
221 sg:pub.10.1007/s001220051635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026795799
222 https://doi.org/10.1007/s001220051635
223 rdf:type schema:CreativeWork
224 sg:pub.10.1007/s00344-013-9382-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020551385
225 https://doi.org/10.1007/s00344-013-9382-0
226 rdf:type schema:CreativeWork
227 sg:pub.10.1007/s11033-012-1808-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013211578
228 https://doi.org/10.1007/s11033-012-1808-4
229 rdf:type schema:CreativeWork
230 sg:pub.10.1038/ng.919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035519342
231 https://doi.org/10.1038/ng.919
232 rdf:type schema:CreativeWork
233 sg:pub.10.1038/nrg3627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025596426
234 https://doi.org/10.1038/nrg3627
235 rdf:type schema:CreativeWork
236 sg:pub.10.1038/srep14407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052843588
237 https://doi.org/10.1038/srep14407
238 rdf:type schema:CreativeWork
239 sg:pub.10.1186/1471-2229-14-114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028609878
240 https://doi.org/10.1186/1471-2229-14-114
241 rdf:type schema:CreativeWork
242 sg:pub.10.1186/1746-4811-7-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052813181
243 https://doi.org/10.1186/1746-4811-7-3
244 rdf:type schema:CreativeWork
245 https://app.dimensions.ai/details/publication/pub.1074632808 schema:CreativeWork
246 https://app.dimensions.ai/details/publication/pub.1082535482 schema:CreativeWork
247 https://app.dimensions.ai/details/publication/pub.1082948111 schema:CreativeWork
248 https://doi.org/10.1016/j.tplants.2006.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021466974
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1016/j.tplants.2014.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038320544
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1042/bst20140040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056717628
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1071/ea05228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038570145
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1073/pnas.0508418102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016104028
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1073/pnas.0509021102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016161259
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1073/pnas.96.8.4710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027009396
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1093/bioinformatics/bth230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047038250
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1093/bioinformatics/btm143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029867719
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1093/dnares/dss029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017271925
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1093/jxb/eru125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014446486
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1093/jxb/eru549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030430787
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1104/pp.113.217703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010924199
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1105/tpc.104.027136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050256820
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1105/tpc.108.064972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025108076
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1111/j.1365-294x.2012.05522.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033113663
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1111/pbr.12131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019540723
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1371/journal.pone.0147580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023193813
283 rdf:type schema:CreativeWork
284 https://doi.org/10.2135/cropsci2007.04.0191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069030309
285 rdf:type schema:CreativeWork
286 https://doi.org/10.3389/fpls.2015.01032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053565078
287 rdf:type schema:CreativeWork
288 https://doi.org/10.4161/psb.25928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072308128
289 rdf:type schema:CreativeWork
290 https://www.grid.ac/institutes/grid.8195.5 schema:alternateName University of Delhi
291 schema:name Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India
292 Department of Genetics, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India
293 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...