Deciphering allelic variations for seed glucosinolate traits in oilseed mustard (Brassica juncea) using two bi-parental mapping populations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-04

AUTHORS

Kadambini Rout, Manisha Sharma, Vibha Gupta, Arundhati Mukhopadhyay, Yaspal S. Sodhi, Deepak Pental, Akshay K. Pradhan

ABSTRACT

KEY MESSAGE: QTL mapping by two DH mapping populations deciphered allelic variations for five different seed glucosinolate traits in B. juncea. Allelic variations for five different seed glucosinolate (GS) traits, namely % propyl, % butyl, % pentyl, aliphatics and total GS content were studied through QTL analysis using two doubled haploid (DH) mapping populations. While the high GS parents in two populations differed in their profiles of seed aliphatic GS, the low GS parents were similar. Phenotypic data of seed GS traits from three environments of the two populations were subjected to QTL analysis. The first population (referred to as DE population) detected a total of 60 QTL from three environments which upon intra-population meta-QTL analysis were merged to 17 S-QTL (Stable QTL) and 15 E-QTL (Environment QTL). The second population (referred to as VH population) detected 58 QTL from the three environments that were merged to 15S-QTL and 16E-QTL. In both the populations, majority of S-QTL were detected as major QTL. Inter-population meta-analysis identified three C-QTL (consensus QTL) formed by merging major QTL from the two populations. Candidate genes of GS pathway were co-localized to the QTL regions either through genetic mapping or through in silico comparative analysis. Parental allelic variants of QTL or of the co-mapped candidate gene(s) were determined on the basis of the significantly different R (2) values of the component QTL from the two populations which were merged to form C-QTL. The results of the study are significant for marker-assisted transfer of the low GS trait and also for developing lines with lower GS than are present in Brassica juncea. More... »

PAGES

657-666

References to SciGraph publications

  • 2006-06. Comparative analysis of methylthioalkylmalate synthase (MAM) gene family and flanking DNA sequences in Brassica oleracea and Arabidopsis thaliana in PLANT CELL REPORTS
  • 2007-10. Mapping of yield influencing QTL in Brassica juncea: implications for breeding of a major oilseed crop of dryland areas in THEORETICAL AND APPLIED GENETICS
  • 2014-12. RNA-seq based SNPs for mapping in Brassica juncea (AABB): synteny analysis between the two constituent genomes A (from B. rapa) and B (from B. nigra) shows highly divergent gene block arrangement and unique block fragmentation patterns in BMC GENOMICS
  • 2008-12. Standardized gene nomenclature for the Brassica genus in PLANT METHODS
  • 1994-03. Genetics of aliphatic glucosinolates. I. Side chain elongation in Brassica napus and Arabidopsis thaliana in HEREDITY
  • 2004-05. Extent, variation and breeding impact of natural cross-fertilization in German winter faba beans using hilum colour as marker in EUPHYTICA
  • 2001-02. AFLP-based genetic diversity assessment amongst agronomically important natural and some newly synthesized lines of Brassica juncea in THEORETICAL AND APPLIED GENETICS
  • 1995-02. Mapping the genome of rapeseed (Brassica napus L.). I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content in THEORETICAL AND APPLIED GENETICS
  • 2003-06. Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping in THEORETICAL AND APPLIED GENETICS
  • 2008-12. Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes in BMC GENOMICS
  • 2003-10. Development and genetic mapping of 127 new microsatellite markers in barley in THEORETICAL AND APPLIED GENETICS
  • 2007-12. QTL analysis reveals context-dependent loci for seed glucosinolate trait in the oilseed Brassica juncea: importance of recurrent selection backcross scheme for the identification of ‘true’ QTL in THEORETICAL AND APPLIED GENETICS
  • 2009-02. Fine mapping of loci involved with glucosinolate biosynthesis in oilseed mustard (Brassica juncea) using genomic information from allied species in THEORETICAL AND APPLIED GENETICS
  • 2004-08. Genetic analysis of agronomic and quality traits in mustard (Brassica juncea) in THEORETICAL AND APPLIED GENETICS
  • 1995-10. RFLP mapping of quantitative trait loci controlling seed aliphatic-glucosinolate content in oilseed rape (Brassica napus L) in THEORETICAL AND APPLIED GENETICS
  • 2014-12. Genome survey sequencing provides clues into glucosinolate biosynthesis and flowering pathway evolution in allotetrapolyploid Brassica juncea in BMC GENOMICS
  • 2011-04. MAM gene silencing leads to the induction of C3 and reduction of C4 and C5 side-chain aliphatic glucosinolates in Brassica napus in MOLECULAR BREEDING
  • 2003-04. In planta side-chain glucosinolate modification in Arabidopsis by introduction of dioxygenase Brassica homolog BoGSL-ALK in THEORETICAL AND APPLIED GENETICS
  • 2012-05. Reducing progoitrin and enriching glucoraphanin in Braasica napus seeds through silencing of the GSL-ALK gene family in PLANT MOLECULAR BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00122-015-2461-9

    DOI

    http://dx.doi.org/10.1007/s00122-015-2461-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1043016375

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/25628164


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Alleles", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Breeding", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosome Mapping", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Crosses, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetics, Population", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Glucosinolates", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mustard Plant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phenotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Quantitative Trait Loci", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Seeds", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Delhi", 
              "id": "https://www.grid.ac/institutes/grid.8195.5", 
              "name": [
                "Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India", 
                "Department of Genetics, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rout", 
            "givenName": "Kadambini", 
            "id": "sg:person.01327771536.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327771536.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Delhi", 
              "id": "https://www.grid.ac/institutes/grid.8195.5", 
              "name": [
                "Department of Genetics, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sharma", 
            "givenName": "Manisha", 
            "id": "sg:person.010343620213.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010343620213.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Delhi", 
              "id": "https://www.grid.ac/institutes/grid.8195.5", 
              "name": [
                "Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gupta", 
            "givenName": "Vibha", 
            "id": "sg:person.0707106054.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707106054.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Delhi", 
              "id": "https://www.grid.ac/institutes/grid.8195.5", 
              "name": [
                "Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mukhopadhyay", 
            "givenName": "Arundhati", 
            "id": "sg:person.0674770440.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674770440.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Delhi", 
              "id": "https://www.grid.ac/institutes/grid.8195.5", 
              "name": [
                "Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sodhi", 
            "givenName": "Yaspal S.", 
            "id": "sg:person.01074147016.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074147016.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Delhi", 
              "id": "https://www.grid.ac/institutes/grid.8195.5", 
              "name": [
                "Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India", 
                "Department of Genetics, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pental", 
            "givenName": "Deepak", 
            "id": "sg:person.01230565713.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230565713.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Delhi", 
              "id": "https://www.grid.ac/institutes/grid.8195.5", 
              "name": [
                "Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India", 
                "Department of Genetics, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pradhan", 
            "givenName": "Akshay K.", 
            "id": "sg:person.01137563054.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137563054.00"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1104/pp.106.085555", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000131946"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-007-0610-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000587413", 
              "https://doi.org/10.1007/s00122-007-0610-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-007-0610-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000587413", 
              "https://doi.org/10.1007/s00122-007-0610-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-003-1236-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002373535", 
              "https://doi.org/10.1007/s00122-003-1236-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/pbi.12078", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003998739"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0088804", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004921348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-15-396", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006324818", 
              "https://doi.org/10.1186/1471-2164-15-396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10408398209527361", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006433012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1439-0523.2002.00747.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006709966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4141/cjps90-050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007588911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1742-4658.2009.07076.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008565503"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1742-4658.2009.07076.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008565503"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11103-012-9905-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009067265", 
              "https://doi.org/10.1007/s11103-012-9905-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1139/g03-028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009282659"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-9-113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011621370", 
              "https://doi.org/10.1186/1471-2164-9-113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1139/g03-051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011931298"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1469-8137.2011.03890.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012484796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00299-005-0078-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013193820", 
              "https://doi.org/10.1007/s00299-005-0078-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00299-005-0078-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013193820", 
              "https://doi.org/10.1007/s00299-005-0078-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00299-005-0078-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013193820", 
              "https://doi.org/10.1007/s00299-005-0078-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-003-1345-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013755564", 
              "https://doi.org/10.1007/s00122-003-1345-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-003-1345-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013755564", 
              "https://doi.org/10.1007/s00122-003-1345-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0091428", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016092342"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1439-0523.1993.tb00607.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016509390"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-15-107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018601080", 
              "https://doi.org/10.1186/1471-2164-15-107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1746-4811-4-10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021158187", 
              "https://doi.org/10.1186/1746-4811-4-10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hdy.1994.39", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023657537", 
              "https://doi.org/10.1038/hdy.1994.39"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hdy.1994.39", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023657537", 
              "https://doi.org/10.1038/hdy.1994.39"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-007-0648-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024421095", 
              "https://doi.org/10.1007/s00122-007-0648-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-007-0648-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024421095", 
              "https://doi.org/10.1007/s00122-007-0648-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001220051635", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026795799", 
              "https://doi.org/10.1007/s001220051635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001220051635", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026795799", 
              "https://doi.org/10.1007/s001220051635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-004-1682-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026814946", 
              "https://doi.org/10.1007/s00122-004-1682-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-004-1682-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026814946", 
              "https://doi.org/10.1007/s00122-004-1682-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-010-9444-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027776229", 
              "https://doi.org/10.1007/s11032-010-9444-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tplants.2010.02.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028373236"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-002-1161-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028615290", 
              "https://doi.org/10.1007/s00122-002-1161-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1439-0523.1990.tb00449.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029603053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.arplant.57.032905.105228", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030396132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-313x.2004.02261.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030894262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:euph.0000030672.56206.f0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031105396", 
              "https://doi.org/10.1023/b:euph.0000030672.56206.f0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1360-1385(02)02273-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036284456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00222202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036437236", 
              "https://doi.org/10.1007/bf00222202"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1104/pp.127.1.108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036801558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-008-0907-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043519477", 
              "https://doi.org/10.1007/s00122-008-0907-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-008-0907-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043519477", 
              "https://doi.org/10.1007/s00122-008-0907-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bth230", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047038250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00220963", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050640139", 
              "https://doi.org/10.1007/bf00220963"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4141/cjps90-049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051048142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.gene.2011.07.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052200783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0611629104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052834762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.17660/actahortic.1998.459.15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068396499"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074632808", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1075216836", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-04", 
        "datePublishedReg": "2015-04-01", 
        "description": "KEY MESSAGE: QTL mapping by two DH mapping populations deciphered allelic variations for five different seed glucosinolate traits in B. juncea. Allelic variations for five different seed glucosinolate (GS) traits, namely % propyl, % butyl, % pentyl, aliphatics and total GS content were studied through QTL analysis using two doubled haploid (DH) mapping populations. While the high GS parents in two populations differed in their profiles of seed aliphatic GS, the low GS parents were similar. Phenotypic data of seed GS traits from three environments of the two populations were subjected to QTL analysis. The first population (referred to as DE population) detected a total of 60 QTL from three environments which upon intra-population meta-QTL analysis were merged to 17 S-QTL (Stable QTL) and 15 E-QTL (Environment QTL). The second population (referred to as VH population) detected 58 QTL from the three environments that were merged to 15S-QTL and 16E-QTL. In both the populations, majority of S-QTL were detected as major QTL. Inter-population meta-analysis identified three C-QTL (consensus QTL) formed by merging major QTL from the two populations. Candidate genes of GS pathway were co-localized to the QTL regions either through genetic mapping or through in silico comparative analysis. Parental allelic variants of QTL or of the co-mapped candidate gene(s) were determined on the basis of the significantly different R (2) values of the component QTL from the two populations which were merged to form C-QTL. The results of the study are significant for marker-assisted transfer of the low GS trait and also for developing lines with lower GS than are present in Brassica juncea.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00122-015-2461-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1135804", 
            "issn": [
              "0040-5752", 
              "1432-2242"
            ], 
            "name": "Theoretical and Applied Genetics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "128"
          }
        ], 
        "name": "Deciphering allelic variations for seed glucosinolate traits in oilseed mustard (Brassica juncea) using two bi-parental mapping populations", 
        "pagination": "657-666", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "cce6d652dfbc9069b336cfbe9425cfdc540fe56c3a05bbedf989e347247bd05a"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "25628164"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0145600"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00122-015-2461-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1043016375"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00122-015-2461-9", 
          "https://app.dimensions.ai/details/publication/pub.1043016375"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T13:09", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000490.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s00122-015-2461-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00122-015-2461-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00122-015-2461-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00122-015-2461-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00122-015-2461-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    301 TRIPLES      21 PREDICATES      83 URIs      31 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00122-015-2461-9 schema:about N05956774012a4f45b5447f2a2a4efc8f
    2 N2a1c0fa63eaf4ab28aa2659ea248fcd2
    3 N48311529e53c4ebaac42cbf0307cd781
    4 N6c015173945a4f73a2a929dc86a9834d
    5 N6e7cec08f41c41aaba159efb9e8e50aa
    6 N73762b23a39340ae98deafaa56294e24
    7 N96f02e476ed845b997e0e175b1903a85
    8 N9eee8a516199462f8652b812b2fb0c3a
    9 Nb074803c21494da6b3687eb9900dae0d
    10 Ncbe6b1713f784b1683ea251e8ce12153
    11 anzsrc-for:06
    12 anzsrc-for:0604
    13 schema:author Nf5bfe7d325234478be37d9ccaca6ae56
    14 schema:citation sg:pub.10.1007/bf00220963
    15 sg:pub.10.1007/bf00222202
    16 sg:pub.10.1007/s00122-002-1161-4
    17 sg:pub.10.1007/s00122-003-1236-x
    18 sg:pub.10.1007/s00122-003-1345-6
    19 sg:pub.10.1007/s00122-004-1682-0
    20 sg:pub.10.1007/s00122-007-0610-5
    21 sg:pub.10.1007/s00122-007-0648-4
    22 sg:pub.10.1007/s00122-008-0907-z
    23 sg:pub.10.1007/s001220051635
    24 sg:pub.10.1007/s00299-005-0078-1
    25 sg:pub.10.1007/s11032-010-9444-y
    26 sg:pub.10.1007/s11103-012-9905-2
    27 sg:pub.10.1023/b:euph.0000030672.56206.f0
    28 sg:pub.10.1038/hdy.1994.39
    29 sg:pub.10.1186/1471-2164-15-107
    30 sg:pub.10.1186/1471-2164-15-396
    31 sg:pub.10.1186/1471-2164-9-113
    32 sg:pub.10.1186/1746-4811-4-10
    33 https://app.dimensions.ai/details/publication/pub.1074632808
    34 https://app.dimensions.ai/details/publication/pub.1075216836
    35 https://doi.org/10.1016/j.gene.2011.07.021
    36 https://doi.org/10.1016/j.tplants.2010.02.005
    37 https://doi.org/10.1016/s1360-1385(02)02273-2
    38 https://doi.org/10.1046/j.1439-0523.2002.00747.x
    39 https://doi.org/10.1073/pnas.0611629104
    40 https://doi.org/10.1080/10408398209527361
    41 https://doi.org/10.1093/bioinformatics/bth230
    42 https://doi.org/10.1104/pp.106.085555
    43 https://doi.org/10.1104/pp.127.1.108
    44 https://doi.org/10.1111/j.1365-313x.2004.02261.x
    45 https://doi.org/10.1111/j.1439-0523.1990.tb00449.x
    46 https://doi.org/10.1111/j.1439-0523.1993.tb00607.x
    47 https://doi.org/10.1111/j.1469-8137.2011.03890.x
    48 https://doi.org/10.1111/j.1742-4658.2009.07076.x
    49 https://doi.org/10.1111/pbi.12078
    50 https://doi.org/10.1139/g03-028
    51 https://doi.org/10.1139/g03-051
    52 https://doi.org/10.1146/annurev.arplant.57.032905.105228
    53 https://doi.org/10.1371/journal.pone.0088804
    54 https://doi.org/10.1371/journal.pone.0091428
    55 https://doi.org/10.17660/actahortic.1998.459.15
    56 https://doi.org/10.4141/cjps90-049
    57 https://doi.org/10.4141/cjps90-050
    58 schema:datePublished 2015-04
    59 schema:datePublishedReg 2015-04-01
    60 schema:description KEY MESSAGE: QTL mapping by two DH mapping populations deciphered allelic variations for five different seed glucosinolate traits in B. juncea. Allelic variations for five different seed glucosinolate (GS) traits, namely % propyl, % butyl, % pentyl, aliphatics and total GS content were studied through QTL analysis using two doubled haploid (DH) mapping populations. While the high GS parents in two populations differed in their profiles of seed aliphatic GS, the low GS parents were similar. Phenotypic data of seed GS traits from three environments of the two populations were subjected to QTL analysis. The first population (referred to as DE population) detected a total of 60 QTL from three environments which upon intra-population meta-QTL analysis were merged to 17 S-QTL (Stable QTL) and 15 E-QTL (Environment QTL). The second population (referred to as VH population) detected 58 QTL from the three environments that were merged to 15S-QTL and 16E-QTL. In both the populations, majority of S-QTL were detected as major QTL. Inter-population meta-analysis identified three C-QTL (consensus QTL) formed by merging major QTL from the two populations. Candidate genes of GS pathway were co-localized to the QTL regions either through genetic mapping or through in silico comparative analysis. Parental allelic variants of QTL or of the co-mapped candidate gene(s) were determined on the basis of the significantly different R (2) values of the component QTL from the two populations which were merged to form C-QTL. The results of the study are significant for marker-assisted transfer of the low GS trait and also for developing lines with lower GS than are present in Brassica juncea.
    61 schema:genre research_article
    62 schema:inLanguage en
    63 schema:isAccessibleForFree false
    64 schema:isPartOf Na44cec3d3965487f88e8dd7a6fff9248
    65 Ndc49821f7fda4ce8a63f254949e69bb4
    66 sg:journal.1135804
    67 schema:name Deciphering allelic variations for seed glucosinolate traits in oilseed mustard (Brassica juncea) using two bi-parental mapping populations
    68 schema:pagination 657-666
    69 schema:productId N001152617fa74c7fae77de0dcd9c31f1
    70 N0a7996cc448e42ff8c1aa2dc4ecdd67c
    71 N85e3b284c2b14dde9f7add6b7eb5ca74
    72 Nb55a6d766334414ea11fb01747e1c5b9
    73 Nd033fad0e8154f589ac60f8323513149
    74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043016375
    75 https://doi.org/10.1007/s00122-015-2461-9
    76 schema:sdDatePublished 2019-04-10T13:09
    77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    78 schema:sdPublisher N509274d99e554da5a0a86dcbc49485cd
    79 schema:url http://link.springer.com/10.1007/s00122-015-2461-9
    80 sgo:license sg:explorer/license/
    81 sgo:sdDataset articles
    82 rdf:type schema:ScholarlyArticle
    83 N001152617fa74c7fae77de0dcd9c31f1 schema:name pubmed_id
    84 schema:value 25628164
    85 rdf:type schema:PropertyValue
    86 N034f2051b30d46f79b71be6b31596b1d rdf:first sg:person.010343620213.15
    87 rdf:rest N8862440fdaeb4ddb8faf4da9772c22c9
    88 N05956774012a4f45b5447f2a2a4efc8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    89 schema:name Glucosinolates
    90 rdf:type schema:DefinedTerm
    91 N0a7996cc448e42ff8c1aa2dc4ecdd67c schema:name readcube_id
    92 schema:value cce6d652dfbc9069b336cfbe9425cfdc540fe56c3a05bbedf989e347247bd05a
    93 rdf:type schema:PropertyValue
    94 N2a1c0fa63eaf4ab28aa2659ea248fcd2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Phenotype
    96 rdf:type schema:DefinedTerm
    97 N48311529e53c4ebaac42cbf0307cd781 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    98 schema:name Chromosome Mapping
    99 rdf:type schema:DefinedTerm
    100 N509274d99e554da5a0a86dcbc49485cd schema:name Springer Nature - SN SciGraph project
    101 rdf:type schema:Organization
    102 N6c015173945a4f73a2a929dc86a9834d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Alleles
    104 rdf:type schema:DefinedTerm
    105 N6e7cec08f41c41aaba159efb9e8e50aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Quantitative Trait Loci
    107 rdf:type schema:DefinedTerm
    108 N7272991101204cf1abc2790710b712d3 rdf:first sg:person.01074147016.08
    109 rdf:rest N77858b29d96944d29d176d31e7846e09
    110 N73762b23a39340ae98deafaa56294e24 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Crosses, Genetic
    112 rdf:type schema:DefinedTerm
    113 N77858b29d96944d29d176d31e7846e09 rdf:first sg:person.01230565713.24
    114 rdf:rest Ncf8bf0e724644a9fa69b5efed4a24ca0
    115 N85e3b284c2b14dde9f7add6b7eb5ca74 schema:name nlm_unique_id
    116 schema:value 0145600
    117 rdf:type schema:PropertyValue
    118 N8862440fdaeb4ddb8faf4da9772c22c9 rdf:first sg:person.0707106054.43
    119 rdf:rest Na1530bf14da840228f29da3921c8ecdc
    120 N96f02e476ed845b997e0e175b1903a85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Seeds
    122 rdf:type schema:DefinedTerm
    123 N9eee8a516199462f8652b812b2fb0c3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Mustard Plant
    125 rdf:type schema:DefinedTerm
    126 Na1530bf14da840228f29da3921c8ecdc rdf:first sg:person.0674770440.54
    127 rdf:rest N7272991101204cf1abc2790710b712d3
    128 Na44cec3d3965487f88e8dd7a6fff9248 schema:issueNumber 4
    129 rdf:type schema:PublicationIssue
    130 Nb074803c21494da6b3687eb9900dae0d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Genetics, Population
    132 rdf:type schema:DefinedTerm
    133 Nb55a6d766334414ea11fb01747e1c5b9 schema:name dimensions_id
    134 schema:value pub.1043016375
    135 rdf:type schema:PropertyValue
    136 Ncbe6b1713f784b1683ea251e8ce12153 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Breeding
    138 rdf:type schema:DefinedTerm
    139 Ncf8bf0e724644a9fa69b5efed4a24ca0 rdf:first sg:person.01137563054.00
    140 rdf:rest rdf:nil
    141 Nd033fad0e8154f589ac60f8323513149 schema:name doi
    142 schema:value 10.1007/s00122-015-2461-9
    143 rdf:type schema:PropertyValue
    144 Ndc49821f7fda4ce8a63f254949e69bb4 schema:volumeNumber 128
    145 rdf:type schema:PublicationVolume
    146 Nf5bfe7d325234478be37d9ccaca6ae56 rdf:first sg:person.01327771536.32
    147 rdf:rest N034f2051b30d46f79b71be6b31596b1d
    148 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    149 schema:name Biological Sciences
    150 rdf:type schema:DefinedTerm
    151 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    152 schema:name Genetics
    153 rdf:type schema:DefinedTerm
    154 sg:journal.1135804 schema:issn 0040-5752
    155 1432-2242
    156 schema:name Theoretical and Applied Genetics
    157 rdf:type schema:Periodical
    158 sg:person.010343620213.15 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
    159 schema:familyName Sharma
    160 schema:givenName Manisha
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010343620213.15
    162 rdf:type schema:Person
    163 sg:person.01074147016.08 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
    164 schema:familyName Sodhi
    165 schema:givenName Yaspal S.
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074147016.08
    167 rdf:type schema:Person
    168 sg:person.01137563054.00 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
    169 schema:familyName Pradhan
    170 schema:givenName Akshay K.
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137563054.00
    172 rdf:type schema:Person
    173 sg:person.01230565713.24 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
    174 schema:familyName Pental
    175 schema:givenName Deepak
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230565713.24
    177 rdf:type schema:Person
    178 sg:person.01327771536.32 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
    179 schema:familyName Rout
    180 schema:givenName Kadambini
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327771536.32
    182 rdf:type schema:Person
    183 sg:person.0674770440.54 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
    184 schema:familyName Mukhopadhyay
    185 schema:givenName Arundhati
    186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674770440.54
    187 rdf:type schema:Person
    188 sg:person.0707106054.43 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
    189 schema:familyName Gupta
    190 schema:givenName Vibha
    191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707106054.43
    192 rdf:type schema:Person
    193 sg:pub.10.1007/bf00220963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050640139
    194 https://doi.org/10.1007/bf00220963
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/bf00222202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036437236
    197 https://doi.org/10.1007/bf00222202
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s00122-002-1161-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028615290
    200 https://doi.org/10.1007/s00122-002-1161-4
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s00122-003-1236-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002373535
    203 https://doi.org/10.1007/s00122-003-1236-x
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s00122-003-1345-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013755564
    206 https://doi.org/10.1007/s00122-003-1345-6
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/s00122-004-1682-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026814946
    209 https://doi.org/10.1007/s00122-004-1682-0
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/s00122-007-0610-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000587413
    212 https://doi.org/10.1007/s00122-007-0610-5
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/s00122-007-0648-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024421095
    215 https://doi.org/10.1007/s00122-007-0648-4
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/s00122-008-0907-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1043519477
    218 https://doi.org/10.1007/s00122-008-0907-z
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/s001220051635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026795799
    221 https://doi.org/10.1007/s001220051635
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/s00299-005-0078-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013193820
    224 https://doi.org/10.1007/s00299-005-0078-1
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/s11032-010-9444-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1027776229
    227 https://doi.org/10.1007/s11032-010-9444-y
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/s11103-012-9905-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009067265
    230 https://doi.org/10.1007/s11103-012-9905-2
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1023/b:euph.0000030672.56206.f0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031105396
    233 https://doi.org/10.1023/b:euph.0000030672.56206.f0
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/hdy.1994.39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023657537
    236 https://doi.org/10.1038/hdy.1994.39
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1186/1471-2164-15-107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018601080
    239 https://doi.org/10.1186/1471-2164-15-107
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1186/1471-2164-15-396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006324818
    242 https://doi.org/10.1186/1471-2164-15-396
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1186/1471-2164-9-113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011621370
    245 https://doi.org/10.1186/1471-2164-9-113
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1186/1746-4811-4-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021158187
    248 https://doi.org/10.1186/1746-4811-4-10
    249 rdf:type schema:CreativeWork
    250 https://app.dimensions.ai/details/publication/pub.1074632808 schema:CreativeWork
    251 https://app.dimensions.ai/details/publication/pub.1075216836 schema:CreativeWork
    252 https://doi.org/10.1016/j.gene.2011.07.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052200783
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1016/j.tplants.2010.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028373236
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1016/s1360-1385(02)02273-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036284456
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1046/j.1439-0523.2002.00747.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006709966
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1073/pnas.0611629104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052834762
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1080/10408398209527361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006433012
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1093/bioinformatics/bth230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047038250
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1104/pp.106.085555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000131946
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1104/pp.127.1.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036801558
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1111/j.1365-313x.2004.02261.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030894262
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1111/j.1439-0523.1990.tb00449.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029603053
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1111/j.1439-0523.1993.tb00607.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016509390
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1111/j.1469-8137.2011.03890.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012484796
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1111/j.1742-4658.2009.07076.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008565503
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1111/pbi.12078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003998739
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1139/g03-028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009282659
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1139/g03-051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011931298
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1146/annurev.arplant.57.032905.105228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030396132
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1371/journal.pone.0088804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004921348
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1371/journal.pone.0091428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016092342
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.17660/actahortic.1998.459.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068396499
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.4141/cjps90-049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051048142
    295 rdf:type schema:CreativeWork
    296 https://doi.org/10.4141/cjps90-050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007588911
    297 rdf:type schema:CreativeWork
    298 https://www.grid.ac/institutes/grid.8195.5 schema:alternateName University of Delhi
    299 schema:name Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India
    300 Department of Genetics, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India
    301 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...