Deciphering allelic variations for seed glucosinolate traits in oilseed mustard (Brassica juncea) using two bi-parental mapping populations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-04

AUTHORS

Kadambini Rout, Manisha Sharma, Vibha Gupta, Arundhati Mukhopadhyay, Yaspal S. Sodhi, Deepak Pental, Akshay K. Pradhan

ABSTRACT

KEY MESSAGE: QTL mapping by two DH mapping populations deciphered allelic variations for five different seed glucosinolate traits in B. juncea. Allelic variations for five different seed glucosinolate (GS) traits, namely % propyl, % butyl, % pentyl, aliphatics and total GS content were studied through QTL analysis using two doubled haploid (DH) mapping populations. While the high GS parents in two populations differed in their profiles of seed aliphatic GS, the low GS parents were similar. Phenotypic data of seed GS traits from three environments of the two populations were subjected to QTL analysis. The first population (referred to as DE population) detected a total of 60 QTL from three environments which upon intra-population meta-QTL analysis were merged to 17 S-QTL (Stable QTL) and 15 E-QTL (Environment QTL). The second population (referred to as VH population) detected 58 QTL from the three environments that were merged to 15S-QTL and 16E-QTL. In both the populations, majority of S-QTL were detected as major QTL. Inter-population meta-analysis identified three C-QTL (consensus QTL) formed by merging major QTL from the two populations. Candidate genes of GS pathway were co-localized to the QTL regions either through genetic mapping or through in silico comparative analysis. Parental allelic variants of QTL or of the co-mapped candidate gene(s) were determined on the basis of the significantly different R (2) values of the component QTL from the two populations which were merged to form C-QTL. The results of the study are significant for marker-assisted transfer of the low GS trait and also for developing lines with lower GS than are present in Brassica juncea. More... »

PAGES

657-666

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00122-015-2461-9

DOI

http://dx.doi.org/10.1007/s00122-015-2461-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043016375

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25628164


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alleles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breeding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosome Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Crosses, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetics, Population", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glucosinolates", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mustard Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quantitative Trait Loci", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Seeds", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Delhi", 
          "id": "https://www.grid.ac/institutes/grid.8195.5", 
          "name": [
            "Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India", 
            "Department of Genetics, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rout", 
        "givenName": "Kadambini", 
        "id": "sg:person.01327771536.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327771536.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Delhi", 
          "id": "https://www.grid.ac/institutes/grid.8195.5", 
          "name": [
            "Department of Genetics, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sharma", 
        "givenName": "Manisha", 
        "id": "sg:person.010343620213.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010343620213.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Delhi", 
          "id": "https://www.grid.ac/institutes/grid.8195.5", 
          "name": [
            "Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gupta", 
        "givenName": "Vibha", 
        "id": "sg:person.0707106054.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707106054.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Delhi", 
          "id": "https://www.grid.ac/institutes/grid.8195.5", 
          "name": [
            "Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mukhopadhyay", 
        "givenName": "Arundhati", 
        "id": "sg:person.0674770440.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674770440.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Delhi", 
          "id": "https://www.grid.ac/institutes/grid.8195.5", 
          "name": [
            "Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sodhi", 
        "givenName": "Yaspal S.", 
        "id": "sg:person.01074147016.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074147016.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Delhi", 
          "id": "https://www.grid.ac/institutes/grid.8195.5", 
          "name": [
            "Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India", 
            "Department of Genetics, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pental", 
        "givenName": "Deepak", 
        "id": "sg:person.01230565713.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230565713.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Delhi", 
          "id": "https://www.grid.ac/institutes/grid.8195.5", 
          "name": [
            "Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India", 
            "Department of Genetics, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pradhan", 
        "givenName": "Akshay K.", 
        "id": "sg:person.01137563054.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137563054.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1104/pp.106.085555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000131946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-007-0610-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000587413", 
          "https://doi.org/10.1007/s00122-007-0610-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-007-0610-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000587413", 
          "https://doi.org/10.1007/s00122-007-0610-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-003-1236-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002373535", 
          "https://doi.org/10.1007/s00122-003-1236-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/pbi.12078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003998739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0088804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004921348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-15-396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006324818", 
          "https://doi.org/10.1186/1471-2164-15-396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10408398209527361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006433012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1439-0523.2002.00747.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006709966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4141/cjps90-050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007588911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1742-4658.2009.07076.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008565503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1742-4658.2009.07076.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008565503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11103-012-9905-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009067265", 
          "https://doi.org/10.1007/s11103-012-9905-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/g03-028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009282659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-9-113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011621370", 
          "https://doi.org/10.1186/1471-2164-9-113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/g03-051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011931298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-8137.2011.03890.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012484796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00299-005-0078-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013193820", 
          "https://doi.org/10.1007/s00299-005-0078-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00299-005-0078-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013193820", 
          "https://doi.org/10.1007/s00299-005-0078-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00299-005-0078-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013193820", 
          "https://doi.org/10.1007/s00299-005-0078-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-003-1345-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013755564", 
          "https://doi.org/10.1007/s00122-003-1345-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-003-1345-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013755564", 
          "https://doi.org/10.1007/s00122-003-1345-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0091428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016092342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1439-0523.1993.tb00607.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016509390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-15-107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018601080", 
          "https://doi.org/10.1186/1471-2164-15-107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1746-4811-4-10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021158187", 
          "https://doi.org/10.1186/1746-4811-4-10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1994.39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023657537", 
          "https://doi.org/10.1038/hdy.1994.39"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1994.39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023657537", 
          "https://doi.org/10.1038/hdy.1994.39"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-007-0648-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024421095", 
          "https://doi.org/10.1007/s00122-007-0648-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-007-0648-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024421095", 
          "https://doi.org/10.1007/s00122-007-0648-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001220051635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026795799", 
          "https://doi.org/10.1007/s001220051635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001220051635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026795799", 
          "https://doi.org/10.1007/s001220051635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-004-1682-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026814946", 
          "https://doi.org/10.1007/s00122-004-1682-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-004-1682-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026814946", 
          "https://doi.org/10.1007/s00122-004-1682-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11032-010-9444-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027776229", 
          "https://doi.org/10.1007/s11032-010-9444-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tplants.2010.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028373236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-002-1161-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028615290", 
          "https://doi.org/10.1007/s00122-002-1161-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1439-0523.1990.tb00449.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029603053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.arplant.57.032905.105228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030396132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-313x.2004.02261.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030894262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:euph.0000030672.56206.f0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031105396", 
          "https://doi.org/10.1023/b:euph.0000030672.56206.f0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1360-1385(02)02273-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036284456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00222202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036437236", 
          "https://doi.org/10.1007/bf00222202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.127.1.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036801558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-008-0907-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043519477", 
          "https://doi.org/10.1007/s00122-008-0907-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-008-0907-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043519477", 
          "https://doi.org/10.1007/s00122-008-0907-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047038250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00220963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050640139", 
          "https://doi.org/10.1007/bf00220963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4141/cjps90-049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051048142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gene.2011.07.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052200783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0611629104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052834762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.17660/actahortic.1998.459.15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068396499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074632808", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075216836", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-04", 
    "datePublishedReg": "2015-04-01", 
    "description": "KEY MESSAGE: QTL mapping by two DH mapping populations deciphered allelic variations for five different seed glucosinolate traits in B. juncea. Allelic variations for five different seed glucosinolate (GS) traits, namely % propyl, % butyl, % pentyl, aliphatics and total GS content were studied through QTL analysis using two doubled haploid (DH) mapping populations. While the high GS parents in two populations differed in their profiles of seed aliphatic GS, the low GS parents were similar. Phenotypic data of seed GS traits from three environments of the two populations were subjected to QTL analysis. The first population (referred to as DE population) detected a total of 60 QTL from three environments which upon intra-population meta-QTL analysis were merged to 17 S-QTL (Stable QTL) and 15 E-QTL (Environment QTL). The second population (referred to as VH population) detected 58 QTL from the three environments that were merged to 15S-QTL and 16E-QTL. In both the populations, majority of S-QTL were detected as major QTL. Inter-population meta-analysis identified three C-QTL (consensus QTL) formed by merging major QTL from the two populations. Candidate genes of GS pathway were co-localized to the QTL regions either through genetic mapping or through in silico comparative analysis. Parental allelic variants of QTL or of the co-mapped candidate gene(s) were determined on the basis of the significantly different R (2) values of the component QTL from the two populations which were merged to form C-QTL. The results of the study are significant for marker-assisted transfer of the low GS trait and also for developing lines with lower GS than are present in Brassica juncea.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00122-015-2461-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135804", 
        "issn": [
          "0040-5752", 
          "1432-2242"
        ], 
        "name": "Theoretical and Applied Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "128"
      }
    ], 
    "name": "Deciphering allelic variations for seed glucosinolate traits in oilseed mustard (Brassica juncea) using two bi-parental mapping populations", 
    "pagination": "657-666", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cce6d652dfbc9069b336cfbe9425cfdc540fe56c3a05bbedf989e347247bd05a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25628164"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0145600"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00122-015-2461-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043016375"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00122-015-2461-9", 
      "https://app.dimensions.ai/details/publication/pub.1043016375"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000490.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00122-015-2461-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00122-015-2461-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00122-015-2461-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00122-015-2461-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00122-015-2461-9'


 

This table displays all metadata directly associated to this object as RDF triples.

301 TRIPLES      21 PREDICATES      83 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00122-015-2461-9 schema:about N0478cb1725aa4d71946609062231476d
2 N1f69063bdad64e65bb372b15900ee16e
3 N28d65984053d4f6dad0fa8b42887315c
4 N5827f88cb6f84f309a9a3671e7e7111d
5 N72467bad45dd4af78c5b465eaf2e1980
6 N903b70a3ff5b4f158994deefef46b327
7 N97d546f800c94312b26c97426f510e36
8 Na01b0a4d20754bf69d39d6db08343792
9 Nb4c6c7de26a244d3a649f1c925987bc7
10 Nf9d03c2d9c81472a9f9d6f069c1a318d
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author N2cb3908d65d346f585c49b8de88a90f2
14 schema:citation sg:pub.10.1007/bf00220963
15 sg:pub.10.1007/bf00222202
16 sg:pub.10.1007/s00122-002-1161-4
17 sg:pub.10.1007/s00122-003-1236-x
18 sg:pub.10.1007/s00122-003-1345-6
19 sg:pub.10.1007/s00122-004-1682-0
20 sg:pub.10.1007/s00122-007-0610-5
21 sg:pub.10.1007/s00122-007-0648-4
22 sg:pub.10.1007/s00122-008-0907-z
23 sg:pub.10.1007/s001220051635
24 sg:pub.10.1007/s00299-005-0078-1
25 sg:pub.10.1007/s11032-010-9444-y
26 sg:pub.10.1007/s11103-012-9905-2
27 sg:pub.10.1023/b:euph.0000030672.56206.f0
28 sg:pub.10.1038/hdy.1994.39
29 sg:pub.10.1186/1471-2164-15-107
30 sg:pub.10.1186/1471-2164-15-396
31 sg:pub.10.1186/1471-2164-9-113
32 sg:pub.10.1186/1746-4811-4-10
33 https://app.dimensions.ai/details/publication/pub.1074632808
34 https://app.dimensions.ai/details/publication/pub.1075216836
35 https://doi.org/10.1016/j.gene.2011.07.021
36 https://doi.org/10.1016/j.tplants.2010.02.005
37 https://doi.org/10.1016/s1360-1385(02)02273-2
38 https://doi.org/10.1046/j.1439-0523.2002.00747.x
39 https://doi.org/10.1073/pnas.0611629104
40 https://doi.org/10.1080/10408398209527361
41 https://doi.org/10.1093/bioinformatics/bth230
42 https://doi.org/10.1104/pp.106.085555
43 https://doi.org/10.1104/pp.127.1.108
44 https://doi.org/10.1111/j.1365-313x.2004.02261.x
45 https://doi.org/10.1111/j.1439-0523.1990.tb00449.x
46 https://doi.org/10.1111/j.1439-0523.1993.tb00607.x
47 https://doi.org/10.1111/j.1469-8137.2011.03890.x
48 https://doi.org/10.1111/j.1742-4658.2009.07076.x
49 https://doi.org/10.1111/pbi.12078
50 https://doi.org/10.1139/g03-028
51 https://doi.org/10.1139/g03-051
52 https://doi.org/10.1146/annurev.arplant.57.032905.105228
53 https://doi.org/10.1371/journal.pone.0088804
54 https://doi.org/10.1371/journal.pone.0091428
55 https://doi.org/10.17660/actahortic.1998.459.15
56 https://doi.org/10.4141/cjps90-049
57 https://doi.org/10.4141/cjps90-050
58 schema:datePublished 2015-04
59 schema:datePublishedReg 2015-04-01
60 schema:description KEY MESSAGE: QTL mapping by two DH mapping populations deciphered allelic variations for five different seed glucosinolate traits in B. juncea. Allelic variations for five different seed glucosinolate (GS) traits, namely % propyl, % butyl, % pentyl, aliphatics and total GS content were studied through QTL analysis using two doubled haploid (DH) mapping populations. While the high GS parents in two populations differed in their profiles of seed aliphatic GS, the low GS parents were similar. Phenotypic data of seed GS traits from three environments of the two populations were subjected to QTL analysis. The first population (referred to as DE population) detected a total of 60 QTL from three environments which upon intra-population meta-QTL analysis were merged to 17 S-QTL (Stable QTL) and 15 E-QTL (Environment QTL). The second population (referred to as VH population) detected 58 QTL from the three environments that were merged to 15S-QTL and 16E-QTL. In both the populations, majority of S-QTL were detected as major QTL. Inter-population meta-analysis identified three C-QTL (consensus QTL) formed by merging major QTL from the two populations. Candidate genes of GS pathway were co-localized to the QTL regions either through genetic mapping or through in silico comparative analysis. Parental allelic variants of QTL or of the co-mapped candidate gene(s) were determined on the basis of the significantly different R (2) values of the component QTL from the two populations which were merged to form C-QTL. The results of the study are significant for marker-assisted transfer of the low GS trait and also for developing lines with lower GS than are present in Brassica juncea.
61 schema:genre research_article
62 schema:inLanguage en
63 schema:isAccessibleForFree false
64 schema:isPartOf N5762281674a747eb979d93c166029c81
65 N8126f000a8ad48958d5b01263e22bf9a
66 sg:journal.1135804
67 schema:name Deciphering allelic variations for seed glucosinolate traits in oilseed mustard (Brassica juncea) using two bi-parental mapping populations
68 schema:pagination 657-666
69 schema:productId N00e8b55f589043da83e47709e96ae6f3
70 N96dce3e404834623a72b3a1ee93eb35e
71 Nb1ceedf1175746669a0acc757110a4c4
72 Nbf14d08d8b5f4d718de626e6d0b374b2
73 Nf2976065ad254d19b9a911e1e92d8e90
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043016375
75 https://doi.org/10.1007/s00122-015-2461-9
76 schema:sdDatePublished 2019-04-10T13:09
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N1ef0939573a54ebb9fa3bdfda90228b2
79 schema:url http://link.springer.com/10.1007/s00122-015-2461-9
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N00e8b55f589043da83e47709e96ae6f3 schema:name readcube_id
84 schema:value cce6d652dfbc9069b336cfbe9425cfdc540fe56c3a05bbedf989e347247bd05a
85 rdf:type schema:PropertyValue
86 N0478cb1725aa4d71946609062231476d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Breeding
88 rdf:type schema:DefinedTerm
89 N0f8746ef7fbc4040ae42772c97304ae2 rdf:first sg:person.0674770440.54
90 rdf:rest N46ce6627c9d9406bb3aaeb8d2d10a5d3
91 N1ef0939573a54ebb9fa3bdfda90228b2 schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 N1f69063bdad64e65bb372b15900ee16e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Genetics, Population
95 rdf:type schema:DefinedTerm
96 N28d65984053d4f6dad0fa8b42887315c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Alleles
98 rdf:type schema:DefinedTerm
99 N2cb3908d65d346f585c49b8de88a90f2 rdf:first sg:person.01327771536.32
100 rdf:rest N7b7889ef18be418abf4461c14855f20d
101 N2d8a9d3c37904264aab85e0aea62ec78 rdf:first sg:person.01230565713.24
102 rdf:rest N7bd4b43d89e649a9b226d94d2ef3b977
103 N46ce6627c9d9406bb3aaeb8d2d10a5d3 rdf:first sg:person.01074147016.08
104 rdf:rest N2d8a9d3c37904264aab85e0aea62ec78
105 N5762281674a747eb979d93c166029c81 schema:volumeNumber 128
106 rdf:type schema:PublicationVolume
107 N5827f88cb6f84f309a9a3671e7e7111d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Quantitative Trait Loci
109 rdf:type schema:DefinedTerm
110 N693a0553be7a42d1b8b4f6afee72f669 rdf:first sg:person.0707106054.43
111 rdf:rest N0f8746ef7fbc4040ae42772c97304ae2
112 N72467bad45dd4af78c5b465eaf2e1980 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Mustard Plant
114 rdf:type schema:DefinedTerm
115 N7b7889ef18be418abf4461c14855f20d rdf:first sg:person.010343620213.15
116 rdf:rest N693a0553be7a42d1b8b4f6afee72f669
117 N7bd4b43d89e649a9b226d94d2ef3b977 rdf:first sg:person.01137563054.00
118 rdf:rest rdf:nil
119 N8126f000a8ad48958d5b01263e22bf9a schema:issueNumber 4
120 rdf:type schema:PublicationIssue
121 N903b70a3ff5b4f158994deefef46b327 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Crosses, Genetic
123 rdf:type schema:DefinedTerm
124 N96dce3e404834623a72b3a1ee93eb35e schema:name doi
125 schema:value 10.1007/s00122-015-2461-9
126 rdf:type schema:PropertyValue
127 N97d546f800c94312b26c97426f510e36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Seeds
129 rdf:type schema:DefinedTerm
130 Na01b0a4d20754bf69d39d6db08343792 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Chromosome Mapping
132 rdf:type schema:DefinedTerm
133 Nb1ceedf1175746669a0acc757110a4c4 schema:name dimensions_id
134 schema:value pub.1043016375
135 rdf:type schema:PropertyValue
136 Nb4c6c7de26a244d3a649f1c925987bc7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Phenotype
138 rdf:type schema:DefinedTerm
139 Nbf14d08d8b5f4d718de626e6d0b374b2 schema:name pubmed_id
140 schema:value 25628164
141 rdf:type schema:PropertyValue
142 Nf2976065ad254d19b9a911e1e92d8e90 schema:name nlm_unique_id
143 schema:value 0145600
144 rdf:type schema:PropertyValue
145 Nf9d03c2d9c81472a9f9d6f069c1a318d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Glucosinolates
147 rdf:type schema:DefinedTerm
148 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
149 schema:name Biological Sciences
150 rdf:type schema:DefinedTerm
151 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
152 schema:name Genetics
153 rdf:type schema:DefinedTerm
154 sg:journal.1135804 schema:issn 0040-5752
155 1432-2242
156 schema:name Theoretical and Applied Genetics
157 rdf:type schema:Periodical
158 sg:person.010343620213.15 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
159 schema:familyName Sharma
160 schema:givenName Manisha
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010343620213.15
162 rdf:type schema:Person
163 sg:person.01074147016.08 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
164 schema:familyName Sodhi
165 schema:givenName Yaspal S.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074147016.08
167 rdf:type schema:Person
168 sg:person.01137563054.00 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
169 schema:familyName Pradhan
170 schema:givenName Akshay K.
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137563054.00
172 rdf:type schema:Person
173 sg:person.01230565713.24 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
174 schema:familyName Pental
175 schema:givenName Deepak
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230565713.24
177 rdf:type schema:Person
178 sg:person.01327771536.32 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
179 schema:familyName Rout
180 schema:givenName Kadambini
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327771536.32
182 rdf:type schema:Person
183 sg:person.0674770440.54 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
184 schema:familyName Mukhopadhyay
185 schema:givenName Arundhati
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674770440.54
187 rdf:type schema:Person
188 sg:person.0707106054.43 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
189 schema:familyName Gupta
190 schema:givenName Vibha
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707106054.43
192 rdf:type schema:Person
193 sg:pub.10.1007/bf00220963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050640139
194 https://doi.org/10.1007/bf00220963
195 rdf:type schema:CreativeWork
196 sg:pub.10.1007/bf00222202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036437236
197 https://doi.org/10.1007/bf00222202
198 rdf:type schema:CreativeWork
199 sg:pub.10.1007/s00122-002-1161-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028615290
200 https://doi.org/10.1007/s00122-002-1161-4
201 rdf:type schema:CreativeWork
202 sg:pub.10.1007/s00122-003-1236-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002373535
203 https://doi.org/10.1007/s00122-003-1236-x
204 rdf:type schema:CreativeWork
205 sg:pub.10.1007/s00122-003-1345-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013755564
206 https://doi.org/10.1007/s00122-003-1345-6
207 rdf:type schema:CreativeWork
208 sg:pub.10.1007/s00122-004-1682-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026814946
209 https://doi.org/10.1007/s00122-004-1682-0
210 rdf:type schema:CreativeWork
211 sg:pub.10.1007/s00122-007-0610-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000587413
212 https://doi.org/10.1007/s00122-007-0610-5
213 rdf:type schema:CreativeWork
214 sg:pub.10.1007/s00122-007-0648-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024421095
215 https://doi.org/10.1007/s00122-007-0648-4
216 rdf:type schema:CreativeWork
217 sg:pub.10.1007/s00122-008-0907-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1043519477
218 https://doi.org/10.1007/s00122-008-0907-z
219 rdf:type schema:CreativeWork
220 sg:pub.10.1007/s001220051635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026795799
221 https://doi.org/10.1007/s001220051635
222 rdf:type schema:CreativeWork
223 sg:pub.10.1007/s00299-005-0078-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013193820
224 https://doi.org/10.1007/s00299-005-0078-1
225 rdf:type schema:CreativeWork
226 sg:pub.10.1007/s11032-010-9444-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1027776229
227 https://doi.org/10.1007/s11032-010-9444-y
228 rdf:type schema:CreativeWork
229 sg:pub.10.1007/s11103-012-9905-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009067265
230 https://doi.org/10.1007/s11103-012-9905-2
231 rdf:type schema:CreativeWork
232 sg:pub.10.1023/b:euph.0000030672.56206.f0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031105396
233 https://doi.org/10.1023/b:euph.0000030672.56206.f0
234 rdf:type schema:CreativeWork
235 sg:pub.10.1038/hdy.1994.39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023657537
236 https://doi.org/10.1038/hdy.1994.39
237 rdf:type schema:CreativeWork
238 sg:pub.10.1186/1471-2164-15-107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018601080
239 https://doi.org/10.1186/1471-2164-15-107
240 rdf:type schema:CreativeWork
241 sg:pub.10.1186/1471-2164-15-396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006324818
242 https://doi.org/10.1186/1471-2164-15-396
243 rdf:type schema:CreativeWork
244 sg:pub.10.1186/1471-2164-9-113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011621370
245 https://doi.org/10.1186/1471-2164-9-113
246 rdf:type schema:CreativeWork
247 sg:pub.10.1186/1746-4811-4-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021158187
248 https://doi.org/10.1186/1746-4811-4-10
249 rdf:type schema:CreativeWork
250 https://app.dimensions.ai/details/publication/pub.1074632808 schema:CreativeWork
251 https://app.dimensions.ai/details/publication/pub.1075216836 schema:CreativeWork
252 https://doi.org/10.1016/j.gene.2011.07.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052200783
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1016/j.tplants.2010.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028373236
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1016/s1360-1385(02)02273-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036284456
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1046/j.1439-0523.2002.00747.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006709966
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1073/pnas.0611629104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052834762
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1080/10408398209527361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006433012
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1093/bioinformatics/bth230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047038250
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1104/pp.106.085555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000131946
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1104/pp.127.1.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036801558
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1111/j.1365-313x.2004.02261.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030894262
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1111/j.1439-0523.1990.tb00449.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029603053
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1111/j.1439-0523.1993.tb00607.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016509390
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1111/j.1469-8137.2011.03890.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012484796
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1111/j.1742-4658.2009.07076.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008565503
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1111/pbi.12078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003998739
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1139/g03-028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009282659
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1139/g03-051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011931298
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1146/annurev.arplant.57.032905.105228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030396132
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1371/journal.pone.0088804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004921348
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1371/journal.pone.0091428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016092342
291 rdf:type schema:CreativeWork
292 https://doi.org/10.17660/actahortic.1998.459.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068396499
293 rdf:type schema:CreativeWork
294 https://doi.org/10.4141/cjps90-049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051048142
295 rdf:type schema:CreativeWork
296 https://doi.org/10.4141/cjps90-050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007588911
297 rdf:type schema:CreativeWork
298 https://www.grid.ac/institutes/grid.8195.5 schema:alternateName University of Delhi
299 schema:name Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India
300 Department of Genetics, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India
301 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...