A reaction norm model for genomic selection using high-dimensional genomic and environmental data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-03

AUTHORS

Diego Jarquín, José Crossa, Xavier Lacaze, Philippe Du Cheyron, Joëlle Daucourt, Josiane Lorgeou, François Piraux, Laurent Guerreiro, Paulino Pérez, Mario Calus, Juan Burgueño, Gustavo de los Campos

ABSTRACT

New methods that incorporate the main and interaction effects of high-dimensional markers and of high-dimensional environmental covariates gave increased prediction accuracy of grain yield in wheat across and within environments. In most agricultural crops the effects of genes on traits are modulated by environmental conditions, leading to genetic by environmental interaction (G × E). Modern genotyping technologies allow characterizing genomes in great detail and modern information systems can generate large volumes of environmental data. In principle, G × E can be accounted for using interactions between markers and environmental covariates (ECs). However, when genotypic and environmental information is high dimensional, modeling all possible interactions explicitly becomes infeasible. In this article we show how to model interactions between high-dimensional sets of markers and ECs using covariance functions. The model presented here consists of (random) reaction norm where the genetic and environmental gradients are described as linear functions of markers and of ECs, respectively. We assessed the proposed method using data from Arvalis, consisting of 139 wheat lines genotyped with 2,395 SNPs and evaluated for grain yield over 8 years and various locations within northern France. A total of 68 ECs, defined based on five phases of the phenology of the crop, were used in the analysis. Interaction terms accounted for a sizable proportion (16 %) of the within-environment yield variance, and the prediction accuracy of models including interaction terms was substantially higher (17-34 %) than that of models based on main effects only. Breeding for target environmental conditions has become a central priority of most breeding programs. Methods, like the one presented here, that can capitalize upon the wealth of genomic and environmental information available, will become increasingly important. More... »

PAGES

595-607

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00122-013-2243-1

DOI

http://dx.doi.org/10.1007/s00122-013-2243-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023693068

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24337101


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breeding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "France", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene-Environment Interaction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quantitative Trait Loci", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Selection, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Triticum", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Nebraska\u2013Lincoln", 
          "id": "https://www.grid.ac/institutes/grid.24434.35", 
          "name": [
            "Department of Biostatistics, University of Alabama at Birmingham, 1665 University Boulevard, 327L Ryals Public Health Building, 35216, Birmingham, AL, USA", 
            "Agronomy and Horticulture Department, University of Nebraska, 321 Keim Hall, 68583-0915, Lincoln, NE, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jarqu\u00edn", 
        "givenName": "Diego", 
        "id": "sg:person.01301271572.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301271572.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, D.F., M\u00e9xico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Crossa", 
        "givenName": "Jos\u00e9", 
        "id": "sg:person.01274600533.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274600533.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Arvalis - Institut du V\u00e9g\u00e9tal", 
          "id": "https://www.grid.ac/institutes/grid.424783.e", 
          "name": [
            "Arvalis Institut du v\u00e9g\u00e9tal, Station Inter-institut, 6 chemin de la c\u00f4te vieille, 31450, Bazi\u00e8ge, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lacaze", 
        "givenName": "Xavier", 
        "id": "sg:person.0624000672.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624000672.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Arvalis - Institut du V\u00e9g\u00e9tal", 
          "id": "https://www.grid.ac/institutes/grid.424783.e", 
          "name": [
            "Arvalis Institut du v\u00e9g\u00e9tal, IBP Universit\u00e9 Paris Sud, Rue de Noetzlin, B\u00e2t. 630, 91405, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Du Cheyron", 
        "givenName": "Philippe", 
        "id": "sg:person.01116113246.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116113246.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Arvalis - Institut du V\u00e9g\u00e9tal", 
          "id": "https://www.grid.ac/institutes/grid.424783.e", 
          "name": [
            "Arvalis Institut du v\u00e9g\u00e9tal, IBP Universit\u00e9 Paris Sud, Rue de Noetzlin, B\u00e2t. 630, 91405, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Daucourt", 
        "givenName": "Jo\u00eblle", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Arvalis - Institut du V\u00e9g\u00e9tal", 
          "id": "https://www.grid.ac/institutes/grid.424783.e", 
          "name": [
            "Arvalis Institut du vegetal, Station exp\u00e9rimentale, 91720, Boigneville, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lorgeou", 
        "givenName": "Josiane", 
        "id": "sg:person.01006342472.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006342472.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Arvalis - Institut du V\u00e9g\u00e9tal", 
          "id": "https://www.grid.ac/institutes/grid.424783.e", 
          "name": [
            "Arvalis Institut du vegetal, Station exp\u00e9rimentale, 91720, Boigneville, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Piraux", 
        "givenName": "Fran\u00e7ois", 
        "id": "sg:person.01147563042.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147563042.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Arvalis - Institut du V\u00e9g\u00e9tal", 
          "id": "https://www.grid.ac/institutes/grid.424783.e", 
          "name": [
            "Arvalis Institut du v\u00e9g\u00e9tal, 3 rue Joseph et Marie Hackin, 75116, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guerreiro", 
        "givenName": "Laurent", 
        "id": "sg:person.01226225561.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226225561.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Alabama at Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.265892.2", 
          "name": [
            "Colegio de Postgraduados, Montecillo, Edo. de M\u00e9xico, Mexico, M\u00e9xico", 
            "Department of Biostatistics, University of Alabama at Birmingham, 1665 University Boulevard, 327L Ryals Public Health Building, 35216, Birmingham, AL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "P\u00e9rez", 
        "givenName": "Paulino", 
        "id": "sg:person.0617307633.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617307633.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wageningen University & Research", 
          "id": "https://www.grid.ac/institutes/grid.4818.5", 
          "name": [
            "Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, P.O. Box 135, 6700 AC, Wageningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Calus", 
        "givenName": "Mario", 
        "id": "sg:person.07362405207.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07362405207.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, D.F., M\u00e9xico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burgue\u00f1o", 
        "givenName": "Juan", 
        "id": "sg:person.0733536233.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733536233.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Alabama at Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.265892.2", 
          "name": [
            "Department of Biostatistics, University of Alabama at Birmingham, 1665 University Boulevard, 327L Ryals Public Health Building, 35216, Birmingham, AL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de los Campos", 
        "givenName": "Gustavo", 
        "id": "sg:person.01016147301.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016147301.80"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1534/genetics.110.118521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001006890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.110.118521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001006890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15427528.2011.558767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002965213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420049374.ch8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004238375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:euph.0000040511.46388.ef", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005119174", 
          "https://doi.org/10.1023/b:euph.0000040511.46388.ef"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001220051276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005221494", 
          "https://doi.org/10.1007/s001220051276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.109.101501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006799846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.109.101501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006799846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/138920212800543066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010679176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.1954.0056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010800908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021859600003592", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011329066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021859600003592", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011329066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-62703-447-0_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013084841", 
          "https://doi.org/10.1007/978-1-62703-447-0_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1198/108571104x4423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015157174", 
          "https://doi.org/10.1198/108571104x4423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.081190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017395594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.081190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017395594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0016672310000285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018728175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10681-007-9594-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022582474", 
          "https://doi.org/10.1007/s10681-007-9594-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420049374.ch2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026353197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1439-037x.1998.tb00526.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033044802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-7652.2009.00477.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036591400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-7652.2009.00477.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036591400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-005-0204-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038046631", 
          "https://doi.org/10.1007/s00122-005-0204-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-005-0204-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038046631", 
          "https://doi.org/10.1007/s00122-005-0204-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.071068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039707410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.071068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039707410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02331888808802080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040848536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043805326", 
          "https://doi.org/10.1007/bf02289676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043805326", 
          "https://doi.org/10.1007/bf02289676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021859600050978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045099166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021859600050978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045099166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00288581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046768506", 
          "https://doi.org/10.1007/bf00288581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-013-2160-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052160815", 
          "https://doi.org/10.1007/s00122-013-2160-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021859605005587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053923305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2134/agronj2001.934949x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068994502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci1997.0011183x003700020017x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069025390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci1999.0011183x003900040002x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069026445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2005.11-0427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069029729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2007.11.0632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069030498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2010.07.0403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069031285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2011.06.0297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069031547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2011.06.0299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069031548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2531585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069977026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/jas.2005-517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070885488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3835/plantgenome2010.04.0005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071447771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.6028/jres.073b.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073599577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074795580", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.s0022-0302(02)74399-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075205201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075559377", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.s0022-0302(03)73982-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076611944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077357497", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2007-0980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077799697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1079/9780851996011.0323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089216685"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-03", 
    "datePublishedReg": "2014-03-01", 
    "description": "New methods that incorporate the main and interaction effects of high-dimensional markers and of high-dimensional environmental covariates gave increased prediction accuracy of grain yield in wheat across and within environments. In most agricultural crops the effects of genes on traits are modulated by environmental conditions, leading to genetic by environmental interaction (G \u00d7 E). Modern genotyping technologies allow characterizing genomes in great detail and modern information systems can generate large volumes of environmental data. In principle, G \u00d7 E can be accounted for using interactions between markers and environmental covariates (ECs). However, when genotypic and environmental information is high dimensional, modeling all possible interactions explicitly becomes infeasible. In this article we show how to model interactions between high-dimensional sets of markers and ECs using covariance functions. The model presented here consists of (random) reaction norm where the genetic and environmental gradients are described as linear functions of markers and of ECs, respectively. We assessed the proposed method using data from Arvalis, consisting of 139 wheat lines genotyped with 2,395 SNPs and evaluated for grain yield over 8 years and various locations within northern France. A total of 68 ECs, defined based on five phases of the phenology of the crop, were used in the analysis. Interaction terms accounted for a sizable proportion (16 %) of the within-environment yield variance, and the prediction accuracy of models including interaction terms was substantially higher (17-34 %) than that of models based on main effects only. Breeding for target environmental conditions has become a central priority of most breeding programs. Methods, like the one presented here, that can capitalize upon the wealth of genomic and environmental information available, will become increasingly important.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00122-013-2243-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2521526", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2521665", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1135804", 
        "issn": [
          "0040-5752", 
          "1432-2242"
        ], 
        "name": "Theoretical and Applied Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "127"
      }
    ], 
    "name": "A reaction norm model for genomic selection using high-dimensional genomic and environmental data", 
    "pagination": "595-607", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "70e12f5fe0d7c1b06721a3db07c4b27f02d43cbbf8749c658fbac7f9b1b3a8b4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24337101"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0145600"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00122-013-2243-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023693068"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00122-013-2243-1", 
      "https://app.dimensions.ai/details/publication/pub.1023693068"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89812_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00122-013-2243-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00122-013-2243-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00122-013-2243-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00122-013-2243-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00122-013-2243-1'


 

This table displays all metadata directly associated to this object as RDF triples.

348 TRIPLES      21 PREDICATES      84 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00122-013-2243-1 schema:about N13d67643404a47d9bc6bfe82a9d4d47b
2 N388f5eca1e5249168888c5d0fd5ebe35
3 N444da7777bd3403dafba9f75724970e0
4 N4725015ed76c422993f4e8597feab5da
5 N61a62e15645f4440810c70078973374e
6 N99b3f5b0760e4e5b9b09e8d30200f2ac
7 Nbe922d8aed0f407791428e9689a29853
8 Nc3b320602eb8442f84787b296629de07
9 Nd6a66c8310b74913bd8a7e9bf97ca6ab
10 Ne221eb6d1d17425cbd5323805bc9f3f0
11 Nfc8ed37388e0445fb10b0652658f90c1
12 anzsrc-for:06
13 anzsrc-for:0604
14 schema:author Ndd261f17b3e54c6d91b0af6dc0194c73
15 schema:citation sg:pub.10.1007/978-1-62703-447-0_12
16 sg:pub.10.1007/bf00288581
17 sg:pub.10.1007/bf02289676
18 sg:pub.10.1007/s00122-005-0204-z
19 sg:pub.10.1007/s00122-013-2160-3
20 sg:pub.10.1007/s001220051276
21 sg:pub.10.1007/s10681-007-9594-0
22 sg:pub.10.1023/b:euph.0000040511.46388.ef
23 sg:pub.10.1198/108571104x4423
24 https://app.dimensions.ai/details/publication/pub.1074795580
25 https://app.dimensions.ai/details/publication/pub.1075559377
26 https://app.dimensions.ai/details/publication/pub.1077357497
27 https://doi.org/10.1017/s0016672310000285
28 https://doi.org/10.1017/s0021859600003592
29 https://doi.org/10.1017/s0021859600050978
30 https://doi.org/10.1017/s0021859605005587
31 https://doi.org/10.1079/9780851996011.0323
32 https://doi.org/10.1080/02331888808802080
33 https://doi.org/10.1080/15427528.2011.558767
34 https://doi.org/10.1098/rspb.1954.0056
35 https://doi.org/10.1111/j.1439-037x.1998.tb00526.x
36 https://doi.org/10.1111/j.1467-7652.2009.00477.x
37 https://doi.org/10.1201/9781420049374.ch2
38 https://doi.org/10.1201/9781420049374.ch8
39 https://doi.org/10.1534/genetics.107.071068
40 https://doi.org/10.1534/genetics.107.081190
41 https://doi.org/10.1534/genetics.109.101501
42 https://doi.org/10.1534/genetics.110.118521
43 https://doi.org/10.2134/agronj2001.934949x
44 https://doi.org/10.2135/cropsci1997.0011183x003700020017x
45 https://doi.org/10.2135/cropsci1999.0011183x003900040002x
46 https://doi.org/10.2135/cropsci2005.11-0427
47 https://doi.org/10.2135/cropsci2007.11.0632
48 https://doi.org/10.2135/cropsci2010.07.0403
49 https://doi.org/10.2135/cropsci2011.06.0297
50 https://doi.org/10.2135/cropsci2011.06.0299
51 https://doi.org/10.2174/138920212800543066
52 https://doi.org/10.2307/2531585
53 https://doi.org/10.2527/jas.2005-517
54 https://doi.org/10.3168/jds.2007-0980
55 https://doi.org/10.3168/jds.s0022-0302(02)74399-3
56 https://doi.org/10.3168/jds.s0022-0302(03)73982-4
57 https://doi.org/10.3835/plantgenome2010.04.0005
58 https://doi.org/10.6028/jres.073b.031
59 schema:datePublished 2014-03
60 schema:datePublishedReg 2014-03-01
61 schema:description New methods that incorporate the main and interaction effects of high-dimensional markers and of high-dimensional environmental covariates gave increased prediction accuracy of grain yield in wheat across and within environments. In most agricultural crops the effects of genes on traits are modulated by environmental conditions, leading to genetic by environmental interaction (G × E). Modern genotyping technologies allow characterizing genomes in great detail and modern information systems can generate large volumes of environmental data. In principle, G × E can be accounted for using interactions between markers and environmental covariates (ECs). However, when genotypic and environmental information is high dimensional, modeling all possible interactions explicitly becomes infeasible. In this article we show how to model interactions between high-dimensional sets of markers and ECs using covariance functions. The model presented here consists of (random) reaction norm where the genetic and environmental gradients are described as linear functions of markers and of ECs, respectively. We assessed the proposed method using data from Arvalis, consisting of 139 wheat lines genotyped with 2,395 SNPs and evaluated for grain yield over 8 years and various locations within northern France. A total of 68 ECs, defined based on five phases of the phenology of the crop, were used in the analysis. Interaction terms accounted for a sizable proportion (16 %) of the within-environment yield variance, and the prediction accuracy of models including interaction terms was substantially higher (17-34 %) than that of models based on main effects only. Breeding for target environmental conditions has become a central priority of most breeding programs. Methods, like the one presented here, that can capitalize upon the wealth of genomic and environmental information available, will become increasingly important.
62 schema:genre research_article
63 schema:inLanguage en
64 schema:isAccessibleForFree true
65 schema:isPartOf N2ebe085d01b94a91b179728cb5869a05
66 N3a16190fdb0c4be384c3a656597f7a70
67 sg:journal.1135804
68 schema:name A reaction norm model for genomic selection using high-dimensional genomic and environmental data
69 schema:pagination 595-607
70 schema:productId N1e2fdc2b91394d13ba0323f8641b37c0
71 N2712e0e984e94e1bb440e0dfdce8bf7f
72 N85e42e045d7e4c65bbf306dd995c4fd2
73 Ndf07b36c0ac6486cbda6a50c400d9c85
74 Ne3d2e80f373246dd8a0aff7a27ff05cd
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023693068
76 https://doi.org/10.1007/s00122-013-2243-1
77 schema:sdDatePublished 2019-04-11T09:58
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher N9fde47044a044188915badb53412783c
80 schema:url http://link.springer.com/10.1007%2Fs00122-013-2243-1
81 sgo:license sg:explorer/license/
82 sgo:sdDataset articles
83 rdf:type schema:ScholarlyArticle
84 N04956240970e4328b01628d61bf8ac03 rdf:first sg:person.01116113246.58
85 rdf:rest Naa0af1573d33498b97149ec286c5c328
86 N096c969a169842f19faf347cefca8fa8 schema:affiliation https://www.grid.ac/institutes/grid.424783.e
87 schema:familyName Daucourt
88 schema:givenName Joëlle
89 rdf:type schema:Person
90 N0a7d8430aa694ff79a4b0519b8b77b24 rdf:first sg:person.0624000672.77
91 rdf:rest N04956240970e4328b01628d61bf8ac03
92 N13d67643404a47d9bc6bfe82a9d4d47b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name France
94 rdf:type schema:DefinedTerm
95 N1e2fdc2b91394d13ba0323f8641b37c0 schema:name nlm_unique_id
96 schema:value 0145600
97 rdf:type schema:PropertyValue
98 N2712e0e984e94e1bb440e0dfdce8bf7f schema:name pubmed_id
99 schema:value 24337101
100 rdf:type schema:PropertyValue
101 N2ebe085d01b94a91b179728cb5869a05 schema:issueNumber 3
102 rdf:type schema:PublicationIssue
103 N388f5eca1e5249168888c5d0fd5ebe35 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Breeding
105 rdf:type schema:DefinedTerm
106 N3a16190fdb0c4be384c3a656597f7a70 schema:volumeNumber 127
107 rdf:type schema:PublicationVolume
108 N3a6e5815f8ba496c81c3e17f56dec80a rdf:first sg:person.0617307633.01
109 rdf:rest Nfcbe5a5689094a1392d9785ca5d13d55
110 N444da7777bd3403dafba9f75724970e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Genomics
112 rdf:type schema:DefinedTerm
113 N4725015ed76c422993f4e8597feab5da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Genome, Plant
115 rdf:type schema:DefinedTerm
116 N55addec61f2746729b41a652bc2f4489 rdf:first sg:person.01016147301.80
117 rdf:rest rdf:nil
118 N61a62e15645f4440810c70078973374e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Models, Genetic
120 rdf:type schema:DefinedTerm
121 N7e11b02135e44e1686e430110e40a93f rdf:first sg:person.01147563042.96
122 rdf:rest N8e60d42f3c1f41fe8520b9727d1a6349
123 N85e42e045d7e4c65bbf306dd995c4fd2 schema:name doi
124 schema:value 10.1007/s00122-013-2243-1
125 rdf:type schema:PropertyValue
126 N8e60d42f3c1f41fe8520b9727d1a6349 rdf:first sg:person.01226225561.55
127 rdf:rest N3a6e5815f8ba496c81c3e17f56dec80a
128 N93da075d243f4878a347aa2c23ed0c47 rdf:first sg:person.0733536233.17
129 rdf:rest N55addec61f2746729b41a652bc2f4489
130 N99b3f5b0760e4e5b9b09e8d30200f2ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Gene-Environment Interaction
132 rdf:type schema:DefinedTerm
133 N9fde47044a044188915badb53412783c schema:name Springer Nature - SN SciGraph project
134 rdf:type schema:Organization
135 Naa0af1573d33498b97149ec286c5c328 rdf:first N096c969a169842f19faf347cefca8fa8
136 rdf:rest Nd0327e983cba4cb3be177eb9a2fa77e9
137 Nbe922d8aed0f407791428e9689a29853 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Genotype
139 rdf:type schema:DefinedTerm
140 Nc34e7278fc8b404b8c519f9cfa2aea92 rdf:first sg:person.01274600533.83
141 rdf:rest N0a7d8430aa694ff79a4b0519b8b77b24
142 Nc3b320602eb8442f84787b296629de07 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Quantitative Trait Loci
144 rdf:type schema:DefinedTerm
145 Nd0327e983cba4cb3be177eb9a2fa77e9 rdf:first sg:person.01006342472.89
146 rdf:rest N7e11b02135e44e1686e430110e40a93f
147 Nd6a66c8310b74913bd8a7e9bf97ca6ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Triticum
149 rdf:type schema:DefinedTerm
150 Ndd261f17b3e54c6d91b0af6dc0194c73 rdf:first sg:person.01301271572.63
151 rdf:rest Nc34e7278fc8b404b8c519f9cfa2aea92
152 Ndf07b36c0ac6486cbda6a50c400d9c85 schema:name dimensions_id
153 schema:value pub.1023693068
154 rdf:type schema:PropertyValue
155 Ne221eb6d1d17425cbd5323805bc9f3f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Phenotype
157 rdf:type schema:DefinedTerm
158 Ne3d2e80f373246dd8a0aff7a27ff05cd schema:name readcube_id
159 schema:value 70e12f5fe0d7c1b06721a3db07c4b27f02d43cbbf8749c658fbac7f9b1b3a8b4
160 rdf:type schema:PropertyValue
161 Nfc8ed37388e0445fb10b0652658f90c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Selection, Genetic
163 rdf:type schema:DefinedTerm
164 Nfcbe5a5689094a1392d9785ca5d13d55 rdf:first sg:person.07362405207.38
165 rdf:rest N93da075d243f4878a347aa2c23ed0c47
166 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
167 schema:name Biological Sciences
168 rdf:type schema:DefinedTerm
169 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
170 schema:name Genetics
171 rdf:type schema:DefinedTerm
172 sg:grant.2521526 http://pending.schema.org/fundedItem sg:pub.10.1007/s00122-013-2243-1
173 rdf:type schema:MonetaryGrant
174 sg:grant.2521665 http://pending.schema.org/fundedItem sg:pub.10.1007/s00122-013-2243-1
175 rdf:type schema:MonetaryGrant
176 sg:journal.1135804 schema:issn 0040-5752
177 1432-2242
178 schema:name Theoretical and Applied Genetics
179 rdf:type schema:Periodical
180 sg:person.01006342472.89 schema:affiliation https://www.grid.ac/institutes/grid.424783.e
181 schema:familyName Lorgeou
182 schema:givenName Josiane
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006342472.89
184 rdf:type schema:Person
185 sg:person.01016147301.80 schema:affiliation https://www.grid.ac/institutes/grid.265892.2
186 schema:familyName de los Campos
187 schema:givenName Gustavo
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016147301.80
189 rdf:type schema:Person
190 sg:person.01116113246.58 schema:affiliation https://www.grid.ac/institutes/grid.424783.e
191 schema:familyName Du Cheyron
192 schema:givenName Philippe
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116113246.58
194 rdf:type schema:Person
195 sg:person.01147563042.96 schema:affiliation https://www.grid.ac/institutes/grid.424783.e
196 schema:familyName Piraux
197 schema:givenName François
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147563042.96
199 rdf:type schema:Person
200 sg:person.01226225561.55 schema:affiliation https://www.grid.ac/institutes/grid.424783.e
201 schema:familyName Guerreiro
202 schema:givenName Laurent
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226225561.55
204 rdf:type schema:Person
205 sg:person.01274600533.83 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
206 schema:familyName Crossa
207 schema:givenName José
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274600533.83
209 rdf:type schema:Person
210 sg:person.01301271572.63 schema:affiliation https://www.grid.ac/institutes/grid.24434.35
211 schema:familyName Jarquín
212 schema:givenName Diego
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301271572.63
214 rdf:type schema:Person
215 sg:person.0617307633.01 schema:affiliation https://www.grid.ac/institutes/grid.265892.2
216 schema:familyName Pérez
217 schema:givenName Paulino
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617307633.01
219 rdf:type schema:Person
220 sg:person.0624000672.77 schema:affiliation https://www.grid.ac/institutes/grid.424783.e
221 schema:familyName Lacaze
222 schema:givenName Xavier
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624000672.77
224 rdf:type schema:Person
225 sg:person.0733536233.17 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
226 schema:familyName Burgueño
227 schema:givenName Juan
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733536233.17
229 rdf:type schema:Person
230 sg:person.07362405207.38 schema:affiliation https://www.grid.ac/institutes/grid.4818.5
231 schema:familyName Calus
232 schema:givenName Mario
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07362405207.38
234 rdf:type schema:Person
235 sg:pub.10.1007/978-1-62703-447-0_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013084841
236 https://doi.org/10.1007/978-1-62703-447-0_12
237 rdf:type schema:CreativeWork
238 sg:pub.10.1007/bf00288581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046768506
239 https://doi.org/10.1007/bf00288581
240 rdf:type schema:CreativeWork
241 sg:pub.10.1007/bf02289676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043805326
242 https://doi.org/10.1007/bf02289676
243 rdf:type schema:CreativeWork
244 sg:pub.10.1007/s00122-005-0204-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1038046631
245 https://doi.org/10.1007/s00122-005-0204-z
246 rdf:type schema:CreativeWork
247 sg:pub.10.1007/s00122-013-2160-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052160815
248 https://doi.org/10.1007/s00122-013-2160-3
249 rdf:type schema:CreativeWork
250 sg:pub.10.1007/s001220051276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005221494
251 https://doi.org/10.1007/s001220051276
252 rdf:type schema:CreativeWork
253 sg:pub.10.1007/s10681-007-9594-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022582474
254 https://doi.org/10.1007/s10681-007-9594-0
255 rdf:type schema:CreativeWork
256 sg:pub.10.1023/b:euph.0000040511.46388.ef schema:sameAs https://app.dimensions.ai/details/publication/pub.1005119174
257 https://doi.org/10.1023/b:euph.0000040511.46388.ef
258 rdf:type schema:CreativeWork
259 sg:pub.10.1198/108571104x4423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015157174
260 https://doi.org/10.1198/108571104x4423
261 rdf:type schema:CreativeWork
262 https://app.dimensions.ai/details/publication/pub.1074795580 schema:CreativeWork
263 https://app.dimensions.ai/details/publication/pub.1075559377 schema:CreativeWork
264 https://app.dimensions.ai/details/publication/pub.1077357497 schema:CreativeWork
265 https://doi.org/10.1017/s0016672310000285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018728175
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1017/s0021859600003592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011329066
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1017/s0021859600050978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045099166
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1017/s0021859605005587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053923305
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1079/9780851996011.0323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089216685
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1080/02331888808802080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040848536
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1080/15427528.2011.558767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002965213
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1098/rspb.1954.0056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010800908
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1111/j.1439-037x.1998.tb00526.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033044802
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1111/j.1467-7652.2009.00477.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036591400
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1201/9781420049374.ch2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026353197
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1201/9781420049374.ch8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004238375
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1534/genetics.107.071068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039707410
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1534/genetics.107.081190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017395594
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1534/genetics.109.101501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006799846
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1534/genetics.110.118521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001006890
296 rdf:type schema:CreativeWork
297 https://doi.org/10.2134/agronj2001.934949x schema:sameAs https://app.dimensions.ai/details/publication/pub.1068994502
298 rdf:type schema:CreativeWork
299 https://doi.org/10.2135/cropsci1997.0011183x003700020017x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069025390
300 rdf:type schema:CreativeWork
301 https://doi.org/10.2135/cropsci1999.0011183x003900040002x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069026445
302 rdf:type schema:CreativeWork
303 https://doi.org/10.2135/cropsci2005.11-0427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069029729
304 rdf:type schema:CreativeWork
305 https://doi.org/10.2135/cropsci2007.11.0632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069030498
306 rdf:type schema:CreativeWork
307 https://doi.org/10.2135/cropsci2010.07.0403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069031285
308 rdf:type schema:CreativeWork
309 https://doi.org/10.2135/cropsci2011.06.0297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069031547
310 rdf:type schema:CreativeWork
311 https://doi.org/10.2135/cropsci2011.06.0299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069031548
312 rdf:type schema:CreativeWork
313 https://doi.org/10.2174/138920212800543066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010679176
314 rdf:type schema:CreativeWork
315 https://doi.org/10.2307/2531585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069977026
316 rdf:type schema:CreativeWork
317 https://doi.org/10.2527/jas.2005-517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070885488
318 rdf:type schema:CreativeWork
319 https://doi.org/10.3168/jds.2007-0980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077799697
320 rdf:type schema:CreativeWork
321 https://doi.org/10.3168/jds.s0022-0302(02)74399-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075205201
322 rdf:type schema:CreativeWork
323 https://doi.org/10.3168/jds.s0022-0302(03)73982-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076611944
324 rdf:type schema:CreativeWork
325 https://doi.org/10.3835/plantgenome2010.04.0005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071447771
326 rdf:type schema:CreativeWork
327 https://doi.org/10.6028/jres.073b.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073599577
328 rdf:type schema:CreativeWork
329 https://www.grid.ac/institutes/grid.24434.35 schema:alternateName University of Nebraska–Lincoln
330 schema:name Agronomy and Horticulture Department, University of Nebraska, 321 Keim Hall, 68583-0915, Lincoln, NE, USA
331 Department of Biostatistics, University of Alabama at Birmingham, 1665 University Boulevard, 327L Ryals Public Health Building, 35216, Birmingham, AL, USA
332 rdf:type schema:Organization
333 https://www.grid.ac/institutes/grid.265892.2 schema:alternateName University of Alabama at Birmingham
334 schema:name Colegio de Postgraduados, Montecillo, Edo. de México, Mexico, México
335 Department of Biostatistics, University of Alabama at Birmingham, 1665 University Boulevard, 327L Ryals Public Health Building, 35216, Birmingham, AL, USA
336 rdf:type schema:Organization
337 https://www.grid.ac/institutes/grid.424783.e schema:alternateName Arvalis - Institut du Végétal
338 schema:name Arvalis Institut du vegetal, Station expérimentale, 91720, Boigneville, France
339 Arvalis Institut du végétal, 3 rue Joseph et Marie Hackin, 75116, Paris, France
340 Arvalis Institut du végétal, IBP Université Paris Sud, Rue de Noetzlin, Bât. 630, 91405, Orsay, France
341 Arvalis Institut du végétal, Station Inter-institut, 6 chemin de la côte vieille, 31450, Baziège, France
342 rdf:type schema:Organization
343 https://www.grid.ac/institutes/grid.433436.5 schema:alternateName International Maize and Wheat Improvement Center
344 schema:name Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, D.F., México
345 rdf:type schema:Organization
346 https://www.grid.ac/institutes/grid.4818.5 schema:alternateName Wageningen University & Research
347 schema:name Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, P.O. Box 135, 6700 AC, Wageningen, The Netherlands
348 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...