Genome-wide association analysis for nine agronomic traits in maize under well-watered and water-stressed conditions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-10

AUTHORS

Yadong Xue, Marilyn L. Warburton, Mark Sawkins, Xuehai Zhang, Tim Setter, Yunbi Xu, Pichet Grudloyma, James Gethi, Jean-Marcel Ribaut, Wanchen Li, Xiaobo Zhang, Yonglian Zheng, Jianbing Yan

ABSTRACT

Drought can cause severe reduction in maize production, and strongly threatens crop yields. To dissect this complex trait and identify superior alleles, 350 tropical and subtropical maize inbred lines were genotyped using a 1536-SNP array developed from drought-related genes and an array of 56,110 random SNPs. The inbred lines were crossed with a common tester, CML312, and the testcrosses were phenotyped for nine traits under well-watered and water-stressed conditions in seven environments. Using genome-wide association mapping with correction for population structure, 42 associated SNPs (P ≤ 2.25 × 10(-6) 0.1/N) were identified, located in 33 genes for 126 trait × environment × treatment combinations. Of these genes, three were co-localized to drought-related QTL regions. Gene GRMZM2G125777 was strongly associated with ear relative position, hundred kernel weight and timing of male and female flowering, and encodes NAC domain-containing protein 2, a transcription factor expressed in different tissues. These results provide some good information for understanding the genetic basis for drought tolerance and further studies on identified candidate genes should illuminate mechanisms of drought tolerance and provide tools for designing drought-tolerant maize cultivars tailored to different environmental scenarios. More... »

PAGES

2587-2596

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00122-013-2158-x

DOI

http://dx.doi.org/10.1007/s00122-013-2158-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011426203

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23884600


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Agriculture", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dehydration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome-Wide Association Study", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linkage Disequilibrium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quantitative Trait, Heritable", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stress, Physiological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thailand", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Zea mays", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Huazhong Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.35155.37", 
          "name": [
            "National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xue", 
        "givenName": "Yadong", 
        "id": "sg:person.01023375427.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023375427.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mississippi State University", 
          "id": "https://www.grid.ac/institutes/grid.260120.7", 
          "name": [
            "USDA-ARS Corn Host Plant Research Resistance Unit, Mississippi State University, Box 9555, 39762, Starkville, MS, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Warburton", 
        "givenName": "Marilyn L.", 
        "id": "sg:person.01206437760.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206437760.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Generation Challenge Program, Apdo. Postal 6-641, 06600, Mexico, D.F., Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sawkins", 
        "givenName": "Mark", 
        "id": "sg:person.01175675463.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175675463.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Huazhong Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.35155.37", 
          "name": [
            "National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Xuehai", 
        "id": "sg:person.0766232551.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766232551.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Department of Crop and Soil Sciences, Cornell University, 14853, Ithaca, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Setter", 
        "givenName": "Tim", 
        "id": "sg:person.01366367724.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366367724.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "International Maize and Wheat Improvement Center, Apdo. Postal 6-641, 06600, Mexico, D.F., Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Yunbi", 
        "id": "sg:person.01045477121.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045477121.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Nakhon Sawan Field Crops Research Center (NSFCRC), 60190, Takfa, Nakhon Sawan, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grudloyma", 
        "givenName": "Pichet", 
        "id": "sg:person.0675022642.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675022642.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kenya Agricultural Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.419751.f", 
          "name": [
            "Kenya Agricultural Research Institute (KARI), RRC Mtwapa, P.O. Box 16, Mtwapa, Kenya"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gethi", 
        "givenName": "James", 
        "id": "sg:person.01216707551.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216707551.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Generation Challenge Program, Apdo. Postal 6-641, 06600, Mexico, D.F., Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ribaut", 
        "givenName": "Jean-Marcel", 
        "id": "sg:person.01172205716.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172205716.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sichuan Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.80510.3c", 
          "name": [
            "Maize Research Institute, Sichuan Agricultural University, Ya\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Wanchen", 
        "id": "sg:person.013065506512.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013065506512.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Huazhong Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.35155.37", 
          "name": [
            "National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Xiaobo", 
        "id": "sg:person.0607532051.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607532051.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Huazhong Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.35155.37", 
          "name": [
            "National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Yonglian", 
        "id": "sg:person.0655645251.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655645251.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Huazhong Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.35155.37", 
          "name": [
            "National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Jianbing", 
        "id": "sg:person.01100253667.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100253667.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.201394398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001866470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0008451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001916818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001220051234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004451236", 
          "https://doi.org/10.1007/s001220051234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001220051234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004451236", 
          "https://doi.org/10.1007/s001220051234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/erq329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004551548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mrfmmm.2005.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004895254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1120813109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005777846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aob/mcf134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007428666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fphys.2012.00180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007557540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2229-10-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009045822", 
          "https://doi.org/10.1186/1471-2229-10-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5897/ajb2008.000-5031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009607383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1002383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010500752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011521286", 
          "https://doi.org/10.1038/nrg2760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011521286", 
          "https://doi.org/10.1038/nrg2760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tplants.2009.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012888379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fcr.2004.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013551325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021859608007818", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013839425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021859608007818", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013839425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-79418-1_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016576085", 
          "https://doi.org/10.1007/978-0-387-79418-1_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-79418-1_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016576085", 
          "https://doi.org/10.1007/978-0-387-79418-1_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017784241", 
          "https://doi.org/10.1038/ng.546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017784241", 
          "https://doi.org/10.1038/ng.546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/519795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019061180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/err269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020757961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.109.146803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020793815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/dbio.1999.9603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023318344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1744-7909.2011.01051.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024118191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.0030004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024571818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0029229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024681650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028217957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-5578-2_23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028858512", 
          "https://doi.org/10.1007/978-1-4020-5578-2_23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-5578-2_23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028858512", 
          "https://doi.org/10.1007/978-1-4020-5578-2_23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9780203022030.ch15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030396678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031429813", 
          "https://doi.org/10.1038/ng1847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031429813", 
          "https://doi.org/10.1038/ng1847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-313x.2011.04527.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034125957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0028334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035181255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/erq308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035193594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036147444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/err373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036310350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-4290(93)90064-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037231102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-4290(93)90064-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037231102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.earscirev.2006.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039229642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jexbot/53.366.13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039275873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.2484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040015846", 
          "https://doi.org/10.1038/ng.2484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1006170902271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040251608", 
          "https://doi.org/10.1023/a:1006170902271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.105.045062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041231525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.105.045062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041231525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1006105107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041248679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/err105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041699719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470650301.ch7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043647465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pbi.2007.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043681037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/erl227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045028609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045289100", 
          "https://doi.org/10.1038/ng.746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.110.076653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045431036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046100112", 
          "https://doi.org/10.1038/nbt1192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046100112", 
          "https://doi.org/10.1038/nbt1192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.109.068437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047578921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048649124", 
          "https://doi.org/10.1038/ng.308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2298/gensr1102263n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052011104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbp050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052302288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1875-2780(09)60072-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053462155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi060609y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055201984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi060609y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055201984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1174276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062460175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1174276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062460175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci1999.3951306x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069026522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2001.4151530x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069027372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2005.0246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069029366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2005.04-0034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069029424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci2010.04.0233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069031211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/138161209787582219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069166888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2225/vol14-issue3-fulltext-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069345442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2445869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069938825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3835/plantgenome2008.02.0089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071447719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4161/psb.6.7.15261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072309741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4238/vol10-2gmr1139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072396604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cssaspecpub29.c4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088346178"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-10", 
    "datePublishedReg": "2013-10-01", 
    "description": "Drought can cause severe reduction in maize production, and strongly threatens crop yields. To dissect this complex trait and identify superior alleles, 350 tropical and subtropical maize inbred lines were genotyped using a 1536-SNP array developed from drought-related genes and an array of 56,110 random SNPs. The inbred lines were crossed with a common tester, CML312, and the testcrosses were phenotyped for nine traits under well-watered and water-stressed conditions in seven environments. Using genome-wide association mapping with correction for population structure, 42 associated SNPs (P\u00a0\u2264\u00a02.25\u00a0\u00d7\u00a010(-6) 0.1/N) were identified, located in 33 genes for 126 trait\u00a0\u00d7\u00a0environment\u00a0\u00d7\u00a0treatment combinations. Of these genes, three were co-localized to drought-related QTL regions. Gene GRMZM2G125777 was strongly associated with ear relative position, hundred kernel weight and timing of male and female flowering, and encodes NAC domain-containing protein 2, a transcription factor expressed in different tissues. These results provide some good information for understanding the genetic basis for drought tolerance and further studies on identified candidate genes should illuminate mechanisms of drought tolerance and provide tools for designing drought-tolerant maize cultivars tailored to different environmental scenarios. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00122-013-2158-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135804", 
        "issn": [
          "0040-5752", 
          "1432-2242"
        ], 
        "name": "Theoretical and Applied Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "126"
      }
    ], 
    "name": "Genome-wide association analysis for nine agronomic traits in maize under well-watered and water-stressed conditions", 
    "pagination": "2587-2596", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "36706f22e688de9e3c3152beaad8acab913fd3c63b65b7a33b042725e227b310"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23884600"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0145600"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00122-013-2158-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011426203"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00122-013-2158-x", 
      "https://app.dimensions.ai/details/publication/pub.1011426203"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000486.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00122-013-2158-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00122-013-2158-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00122-013-2158-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00122-013-2158-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00122-013-2158-x'


 

This table displays all metadata directly associated to this object as RDF triples.

428 TRIPLES      21 PREDICATES      106 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00122-013-2158-x schema:about N047b7b02cd6e4ecd898f4ce8ac3c5902
2 N343aed5d590c4cf591cc7c0040ba1c71
3 N719339a0d0c74aa98f18cfa87f1b803c
4 N765a6864064640d7a2a04b4adaa1abc1
5 N904f6bdecac0423183038c19782f8c44
6 N92ceb33213b84b188ac1d8b27fd4296c
7 N98aef2932e314838bca0cc39cd2bb9af
8 Naab30f2b5125430a8094216bdef42290
9 Nbe79c51e18db4969a6b2ab0a09393f96
10 Nbfbcc504f0a447358d186b75179f36f1
11 Nf3e28d0c87b74057af1f6d398edee3fa
12 anzsrc-for:06
13 anzsrc-for:0604
14 schema:author Nf9edb44316064e9fb6b8c0a82606f340
15 schema:citation sg:pub.10.1007/978-0-387-79418-1_16
16 sg:pub.10.1007/978-1-4020-5578-2_23
17 sg:pub.10.1007/s001220051234
18 sg:pub.10.1023/a:1006170902271
19 sg:pub.10.1038/nbt1192
20 sg:pub.10.1038/ng.2484
21 sg:pub.10.1038/ng.308
22 sg:pub.10.1038/ng.546
23 sg:pub.10.1038/ng.746
24 sg:pub.10.1038/ng1847
25 sg:pub.10.1038/nrg2760
26 sg:pub.10.1186/1471-2229-10-2
27 https://doi.org/10.1002/9780470650301.ch7
28 https://doi.org/10.1006/dbio.1999.9603
29 https://doi.org/10.1016/0378-4290(93)90064-t
30 https://doi.org/10.1016/j.earscirev.2006.12.002
31 https://doi.org/10.1016/j.fcr.2004.07.003
32 https://doi.org/10.1016/j.mrfmmm.2005.01.006
33 https://doi.org/10.1016/j.pbi.2007.01.003
34 https://doi.org/10.1016/j.tplants.2009.01.007
35 https://doi.org/10.1016/s1875-2780(09)60072-9
36 https://doi.org/10.1017/s0021859608007818
37 https://doi.org/10.1021/bi060609y
38 https://doi.org/10.1073/pnas.1006105107
39 https://doi.org/10.1073/pnas.1120813109
40 https://doi.org/10.1073/pnas.201394398
41 https://doi.org/10.1086/519795
42 https://doi.org/10.1093/aob/mcf134
43 https://doi.org/10.1093/bib/bbp050
44 https://doi.org/10.1093/bioinformatics/btm308
45 https://doi.org/10.1093/bioinformatics/bts444
46 https://doi.org/10.1093/jexbot/53.366.13
47 https://doi.org/10.1093/jxb/erl227
48 https://doi.org/10.1093/jxb/erq308
49 https://doi.org/10.1093/jxb/erq329
50 https://doi.org/10.1093/jxb/err105
51 https://doi.org/10.1093/jxb/err269
52 https://doi.org/10.1093/jxb/err373
53 https://doi.org/10.1104/pp.109.146803
54 https://doi.org/10.1105/tpc.109.068437
55 https://doi.org/10.1105/tpc.110.076653
56 https://doi.org/10.1111/j.1365-313x.2011.04527.x
57 https://doi.org/10.1111/j.1744-7909.2011.01051.x
58 https://doi.org/10.1126/science.1174276
59 https://doi.org/10.1201/9780203022030.ch15
60 https://doi.org/10.1371/journal.pgen.0030004
61 https://doi.org/10.1371/journal.pgen.1002383
62 https://doi.org/10.1371/journal.pone.0008451
63 https://doi.org/10.1371/journal.pone.0028334
64 https://doi.org/10.1371/journal.pone.0029229
65 https://doi.org/10.1534/genetics.105.045062
66 https://doi.org/10.2135/cropsci1999.3951306x
67 https://doi.org/10.2135/cropsci2001.4151530x
68 https://doi.org/10.2135/cropsci2005.0246
69 https://doi.org/10.2135/cropsci2005.04-0034
70 https://doi.org/10.2135/cropsci2010.04.0233
71 https://doi.org/10.2135/cssaspecpub29.c4
72 https://doi.org/10.2174/138161209787582219
73 https://doi.org/10.2225/vol14-issue3-fulltext-3
74 https://doi.org/10.2298/gensr1102263n
75 https://doi.org/10.2307/2445869
76 https://doi.org/10.3389/fphys.2012.00180
77 https://doi.org/10.3835/plantgenome2008.02.0089
78 https://doi.org/10.4161/psb.6.7.15261
79 https://doi.org/10.4238/vol10-2gmr1139
80 https://doi.org/10.5897/ajb2008.000-5031
81 schema:datePublished 2013-10
82 schema:datePublishedReg 2013-10-01
83 schema:description Drought can cause severe reduction in maize production, and strongly threatens crop yields. To dissect this complex trait and identify superior alleles, 350 tropical and subtropical maize inbred lines were genotyped using a 1536-SNP array developed from drought-related genes and an array of 56,110 random SNPs. The inbred lines were crossed with a common tester, CML312, and the testcrosses were phenotyped for nine traits under well-watered and water-stressed conditions in seven environments. Using genome-wide association mapping with correction for population structure, 42 associated SNPs (P ≤ 2.25 × 10(-6) 0.1/N) were identified, located in 33 genes for 126 trait × environment × treatment combinations. Of these genes, three were co-localized to drought-related QTL regions. Gene GRMZM2G125777 was strongly associated with ear relative position, hundred kernel weight and timing of male and female flowering, and encodes NAC domain-containing protein 2, a transcription factor expressed in different tissues. These results provide some good information for understanding the genetic basis for drought tolerance and further studies on identified candidate genes should illuminate mechanisms of drought tolerance and provide tools for designing drought-tolerant maize cultivars tailored to different environmental scenarios.
84 schema:genre research_article
85 schema:inLanguage en
86 schema:isAccessibleForFree false
87 schema:isPartOf N794f094060254aa79e5dd98a31214094
88 Nf9bcc9df502b44f89357ff24d17b8577
89 sg:journal.1135804
90 schema:name Genome-wide association analysis for nine agronomic traits in maize under well-watered and water-stressed conditions
91 schema:pagination 2587-2596
92 schema:productId N44e809532d17442d800fa0c953934c10
93 N57e130a70d7f4e41a6074f77f48cf3eb
94 N99c77c7d794b4b87941d0a122b905162
95 N9e654325fdb6458f96e9c06364a320ac
96 Nb1404a72efe14bf299fe6b325bef5e01
97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011426203
98 https://doi.org/10.1007/s00122-013-2158-x
99 schema:sdDatePublished 2019-04-10T18:14
100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
101 schema:sdPublisher N25b6888036b442b29b628de85052fff6
102 schema:url http://link.springer.com/10.1007/s00122-013-2158-x
103 sgo:license sg:explorer/license/
104 sgo:sdDataset articles
105 rdf:type schema:ScholarlyArticle
106 N047b7b02cd6e4ecd898f4ce8ac3c5902 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Thailand
108 rdf:type schema:DefinedTerm
109 N0a927360e9dd4d8a9016f6680cca69c1 schema:name Generation Challenge Program, Apdo. Postal 6-641, 06600, Mexico, D.F., Mexico
110 rdf:type schema:Organization
111 N14b1ad631073488ebb9a3b0a0acf76fd rdf:first sg:person.0655645251.44
112 rdf:rest N37b6d3a96df541d2819f8c8faffd312a
113 N15f5b045ba7c41d983e7afc74c0a2be7 rdf:first sg:person.01366367724.24
114 rdf:rest N9f1fa9868ca3417bb71b1d02f7f537d9
115 N1996ad8f2da44ac4b8bac3dc1af0c9b3 rdf:first sg:person.01206437760.49
116 rdf:rest N1c78b347224b4592b11d2ad12dfb613c
117 N1c78b347224b4592b11d2ad12dfb613c rdf:first sg:person.01175675463.29
118 rdf:rest N2a7171d61f6a4550bfa6298fa3dc7a6c
119 N25b6888036b442b29b628de85052fff6 schema:name Springer Nature - SN SciGraph project
120 rdf:type schema:Organization
121 N2a7171d61f6a4550bfa6298fa3dc7a6c rdf:first sg:person.0766232551.21
122 rdf:rest N15f5b045ba7c41d983e7afc74c0a2be7
123 N343aed5d590c4cf591cc7c0040ba1c71 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Linkage Disequilibrium
125 rdf:type schema:DefinedTerm
126 N37b6d3a96df541d2819f8c8faffd312a rdf:first sg:person.01100253667.46
127 rdf:rest rdf:nil
128 N44e809532d17442d800fa0c953934c10 schema:name doi
129 schema:value 10.1007/s00122-013-2158-x
130 rdf:type schema:PropertyValue
131 N4765b9f5d146426eb40837f17689c547 rdf:first sg:person.01216707551.54
132 rdf:rest N91cc9551afe8427d8572c1fcf0b5cd40
133 N57e130a70d7f4e41a6074f77f48cf3eb schema:name readcube_id
134 schema:value 36706f22e688de9e3c3152beaad8acab913fd3c63b65b7a33b042725e227b310
135 rdf:type schema:PropertyValue
136 N60a863a4fdb14fdf8094a898dff8492c rdf:first sg:person.0607532051.12
137 rdf:rest N14b1ad631073488ebb9a3b0a0acf76fd
138 N719339a0d0c74aa98f18cfa87f1b803c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Stress, Physiological
140 rdf:type schema:DefinedTerm
141 N765a6864064640d7a2a04b4adaa1abc1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Zea mays
143 rdf:type schema:DefinedTerm
144 N794f094060254aa79e5dd98a31214094 schema:volumeNumber 126
145 rdf:type schema:PublicationVolume
146 N904f6bdecac0423183038c19782f8c44 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Phenotype
148 rdf:type schema:DefinedTerm
149 N91cc9551afe8427d8572c1fcf0b5cd40 rdf:first sg:person.01172205716.27
150 rdf:rest Na5226060b04e4a01a2a59939d0e6e02f
151 N92ceb33213b84b188ac1d8b27fd4296c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Agriculture
153 rdf:type schema:DefinedTerm
154 N98aef2932e314838bca0cc39cd2bb9af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Polymorphism, Single Nucleotide
156 rdf:type schema:DefinedTerm
157 N99c77c7d794b4b87941d0a122b905162 schema:name pubmed_id
158 schema:value 23884600
159 rdf:type schema:PropertyValue
160 N9e654325fdb6458f96e9c06364a320ac schema:name nlm_unique_id
161 schema:value 0145600
162 rdf:type schema:PropertyValue
163 N9f1fa9868ca3417bb71b1d02f7f537d9 rdf:first sg:person.01045477121.91
164 rdf:rest Na13bdf520bf44b94bb9fabe56b44af9d
165 Na13bdf520bf44b94bb9fabe56b44af9d rdf:first sg:person.0675022642.01
166 rdf:rest N4765b9f5d146426eb40837f17689c547
167 Na5226060b04e4a01a2a59939d0e6e02f rdf:first sg:person.013065506512.60
168 rdf:rest N60a863a4fdb14fdf8094a898dff8492c
169 Naab30f2b5125430a8094216bdef42290 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Dehydration
171 rdf:type schema:DefinedTerm
172 Nb1404a72efe14bf299fe6b325bef5e01 schema:name dimensions_id
173 schema:value pub.1011426203
174 rdf:type schema:PropertyValue
175 Nbe79c51e18db4969a6b2ab0a09393f96 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Water
177 rdf:type schema:DefinedTerm
178 Nbfbcc504f0a447358d186b75179f36f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Quantitative Trait, Heritable
180 rdf:type schema:DefinedTerm
181 Ne23090c2e29c448ca23903f158cff566 schema:name Nakhon Sawan Field Crops Research Center (NSFCRC), 60190, Takfa, Nakhon Sawan, Thailand
182 rdf:type schema:Organization
183 Nf3e28d0c87b74057af1f6d398edee3fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Genome-Wide Association Study
185 rdf:type schema:DefinedTerm
186 Nf9bcc9df502b44f89357ff24d17b8577 schema:issueNumber 10
187 rdf:type schema:PublicationIssue
188 Nf9edb44316064e9fb6b8c0a82606f340 rdf:first sg:person.01023375427.64
189 rdf:rest N1996ad8f2da44ac4b8bac3dc1af0c9b3
190 Nfd82085c2ddd4365b2f23d93862fb4e8 schema:name Generation Challenge Program, Apdo. Postal 6-641, 06600, Mexico, D.F., Mexico
191 rdf:type schema:Organization
192 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
193 schema:name Biological Sciences
194 rdf:type schema:DefinedTerm
195 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
196 schema:name Genetics
197 rdf:type schema:DefinedTerm
198 sg:journal.1135804 schema:issn 0040-5752
199 1432-2242
200 schema:name Theoretical and Applied Genetics
201 rdf:type schema:Periodical
202 sg:person.01023375427.64 schema:affiliation https://www.grid.ac/institutes/grid.35155.37
203 schema:familyName Xue
204 schema:givenName Yadong
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023375427.64
206 rdf:type schema:Person
207 sg:person.01045477121.91 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
208 schema:familyName Xu
209 schema:givenName Yunbi
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045477121.91
211 rdf:type schema:Person
212 sg:person.01100253667.46 schema:affiliation https://www.grid.ac/institutes/grid.35155.37
213 schema:familyName Yan
214 schema:givenName Jianbing
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100253667.46
216 rdf:type schema:Person
217 sg:person.01172205716.27 schema:affiliation Nfd82085c2ddd4365b2f23d93862fb4e8
218 schema:familyName Ribaut
219 schema:givenName Jean-Marcel
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172205716.27
221 rdf:type schema:Person
222 sg:person.01175675463.29 schema:affiliation N0a927360e9dd4d8a9016f6680cca69c1
223 schema:familyName Sawkins
224 schema:givenName Mark
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175675463.29
226 rdf:type schema:Person
227 sg:person.01206437760.49 schema:affiliation https://www.grid.ac/institutes/grid.260120.7
228 schema:familyName Warburton
229 schema:givenName Marilyn L.
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206437760.49
231 rdf:type schema:Person
232 sg:person.01216707551.54 schema:affiliation https://www.grid.ac/institutes/grid.419751.f
233 schema:familyName Gethi
234 schema:givenName James
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216707551.54
236 rdf:type schema:Person
237 sg:person.013065506512.60 schema:affiliation https://www.grid.ac/institutes/grid.80510.3c
238 schema:familyName Li
239 schema:givenName Wanchen
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013065506512.60
241 rdf:type schema:Person
242 sg:person.01366367724.24 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
243 schema:familyName Setter
244 schema:givenName Tim
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366367724.24
246 rdf:type schema:Person
247 sg:person.0607532051.12 schema:affiliation https://www.grid.ac/institutes/grid.35155.37
248 schema:familyName Zhang
249 schema:givenName Xiaobo
250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607532051.12
251 rdf:type schema:Person
252 sg:person.0655645251.44 schema:affiliation https://www.grid.ac/institutes/grid.35155.37
253 schema:familyName Zheng
254 schema:givenName Yonglian
255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655645251.44
256 rdf:type schema:Person
257 sg:person.0675022642.01 schema:affiliation Ne23090c2e29c448ca23903f158cff566
258 schema:familyName Grudloyma
259 schema:givenName Pichet
260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675022642.01
261 rdf:type schema:Person
262 sg:person.0766232551.21 schema:affiliation https://www.grid.ac/institutes/grid.35155.37
263 schema:familyName Zhang
264 schema:givenName Xuehai
265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766232551.21
266 rdf:type schema:Person
267 sg:pub.10.1007/978-0-387-79418-1_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016576085
268 https://doi.org/10.1007/978-0-387-79418-1_16
269 rdf:type schema:CreativeWork
270 sg:pub.10.1007/978-1-4020-5578-2_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028858512
271 https://doi.org/10.1007/978-1-4020-5578-2_23
272 rdf:type schema:CreativeWork
273 sg:pub.10.1007/s001220051234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004451236
274 https://doi.org/10.1007/s001220051234
275 rdf:type schema:CreativeWork
276 sg:pub.10.1023/a:1006170902271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040251608
277 https://doi.org/10.1023/a:1006170902271
278 rdf:type schema:CreativeWork
279 sg:pub.10.1038/nbt1192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046100112
280 https://doi.org/10.1038/nbt1192
281 rdf:type schema:CreativeWork
282 sg:pub.10.1038/ng.2484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040015846
283 https://doi.org/10.1038/ng.2484
284 rdf:type schema:CreativeWork
285 sg:pub.10.1038/ng.308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048649124
286 https://doi.org/10.1038/ng.308
287 rdf:type schema:CreativeWork
288 sg:pub.10.1038/ng.546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017784241
289 https://doi.org/10.1038/ng.546
290 rdf:type schema:CreativeWork
291 sg:pub.10.1038/ng.746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045289100
292 https://doi.org/10.1038/ng.746
293 rdf:type schema:CreativeWork
294 sg:pub.10.1038/ng1847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031429813
295 https://doi.org/10.1038/ng1847
296 rdf:type schema:CreativeWork
297 sg:pub.10.1038/nrg2760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011521286
298 https://doi.org/10.1038/nrg2760
299 rdf:type schema:CreativeWork
300 sg:pub.10.1186/1471-2229-10-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009045822
301 https://doi.org/10.1186/1471-2229-10-2
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1002/9780470650301.ch7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043647465
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1006/dbio.1999.9603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023318344
306 rdf:type schema:CreativeWork
307 https://doi.org/10.1016/0378-4290(93)90064-t schema:sameAs https://app.dimensions.ai/details/publication/pub.1037231102
308 rdf:type schema:CreativeWork
309 https://doi.org/10.1016/j.earscirev.2006.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039229642
310 rdf:type schema:CreativeWork
311 https://doi.org/10.1016/j.fcr.2004.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013551325
312 rdf:type schema:CreativeWork
313 https://doi.org/10.1016/j.mrfmmm.2005.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004895254
314 rdf:type schema:CreativeWork
315 https://doi.org/10.1016/j.pbi.2007.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043681037
316 rdf:type schema:CreativeWork
317 https://doi.org/10.1016/j.tplants.2009.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012888379
318 rdf:type schema:CreativeWork
319 https://doi.org/10.1016/s1875-2780(09)60072-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053462155
320 rdf:type schema:CreativeWork
321 https://doi.org/10.1017/s0021859608007818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013839425
322 rdf:type schema:CreativeWork
323 https://doi.org/10.1021/bi060609y schema:sameAs https://app.dimensions.ai/details/publication/pub.1055201984
324 rdf:type schema:CreativeWork
325 https://doi.org/10.1073/pnas.1006105107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041248679
326 rdf:type schema:CreativeWork
327 https://doi.org/10.1073/pnas.1120813109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005777846
328 rdf:type schema:CreativeWork
329 https://doi.org/10.1073/pnas.201394398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001866470
330 rdf:type schema:CreativeWork
331 https://doi.org/10.1086/519795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019061180
332 rdf:type schema:CreativeWork
333 https://doi.org/10.1093/aob/mcf134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007428666
334 rdf:type schema:CreativeWork
335 https://doi.org/10.1093/bib/bbp050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052302288
336 rdf:type schema:CreativeWork
337 https://doi.org/10.1093/bioinformatics/btm308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028217957
338 rdf:type schema:CreativeWork
339 https://doi.org/10.1093/bioinformatics/bts444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036147444
340 rdf:type schema:CreativeWork
341 https://doi.org/10.1093/jexbot/53.366.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039275873
342 rdf:type schema:CreativeWork
343 https://doi.org/10.1093/jxb/erl227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045028609
344 rdf:type schema:CreativeWork
345 https://doi.org/10.1093/jxb/erq308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035193594
346 rdf:type schema:CreativeWork
347 https://doi.org/10.1093/jxb/erq329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004551548
348 rdf:type schema:CreativeWork
349 https://doi.org/10.1093/jxb/err105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041699719
350 rdf:type schema:CreativeWork
351 https://doi.org/10.1093/jxb/err269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020757961
352 rdf:type schema:CreativeWork
353 https://doi.org/10.1093/jxb/err373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036310350
354 rdf:type schema:CreativeWork
355 https://doi.org/10.1104/pp.109.146803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020793815
356 rdf:type schema:CreativeWork
357 https://doi.org/10.1105/tpc.109.068437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047578921
358 rdf:type schema:CreativeWork
359 https://doi.org/10.1105/tpc.110.076653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045431036
360 rdf:type schema:CreativeWork
361 https://doi.org/10.1111/j.1365-313x.2011.04527.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034125957
362 rdf:type schema:CreativeWork
363 https://doi.org/10.1111/j.1744-7909.2011.01051.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024118191
364 rdf:type schema:CreativeWork
365 https://doi.org/10.1126/science.1174276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062460175
366 rdf:type schema:CreativeWork
367 https://doi.org/10.1201/9780203022030.ch15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030396678
368 rdf:type schema:CreativeWork
369 https://doi.org/10.1371/journal.pgen.0030004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024571818
370 rdf:type schema:CreativeWork
371 https://doi.org/10.1371/journal.pgen.1002383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010500752
372 rdf:type schema:CreativeWork
373 https://doi.org/10.1371/journal.pone.0008451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001916818
374 rdf:type schema:CreativeWork
375 https://doi.org/10.1371/journal.pone.0028334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035181255
376 rdf:type schema:CreativeWork
377 https://doi.org/10.1371/journal.pone.0029229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024681650
378 rdf:type schema:CreativeWork
379 https://doi.org/10.1534/genetics.105.045062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041231525
380 rdf:type schema:CreativeWork
381 https://doi.org/10.2135/cropsci1999.3951306x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069026522
382 rdf:type schema:CreativeWork
383 https://doi.org/10.2135/cropsci2001.4151530x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069027372
384 rdf:type schema:CreativeWork
385 https://doi.org/10.2135/cropsci2005.0246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069029366
386 rdf:type schema:CreativeWork
387 https://doi.org/10.2135/cropsci2005.04-0034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069029424
388 rdf:type schema:CreativeWork
389 https://doi.org/10.2135/cropsci2010.04.0233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069031211
390 rdf:type schema:CreativeWork
391 https://doi.org/10.2135/cssaspecpub29.c4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088346178
392 rdf:type schema:CreativeWork
393 https://doi.org/10.2174/138161209787582219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069166888
394 rdf:type schema:CreativeWork
395 https://doi.org/10.2225/vol14-issue3-fulltext-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069345442
396 rdf:type schema:CreativeWork
397 https://doi.org/10.2298/gensr1102263n schema:sameAs https://app.dimensions.ai/details/publication/pub.1052011104
398 rdf:type schema:CreativeWork
399 https://doi.org/10.2307/2445869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069938825
400 rdf:type schema:CreativeWork
401 https://doi.org/10.3389/fphys.2012.00180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007557540
402 rdf:type schema:CreativeWork
403 https://doi.org/10.3835/plantgenome2008.02.0089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071447719
404 rdf:type schema:CreativeWork
405 https://doi.org/10.4161/psb.6.7.15261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072309741
406 rdf:type schema:CreativeWork
407 https://doi.org/10.4238/vol10-2gmr1139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072396604
408 rdf:type schema:CreativeWork
409 https://doi.org/10.5897/ajb2008.000-5031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009607383
410 rdf:type schema:CreativeWork
411 https://www.grid.ac/institutes/grid.260120.7 schema:alternateName Mississippi State University
412 schema:name USDA-ARS Corn Host Plant Research Resistance Unit, Mississippi State University, Box 9555, 39762, Starkville, MS, USA
413 rdf:type schema:Organization
414 https://www.grid.ac/institutes/grid.35155.37 schema:alternateName Huazhong Agricultural University
415 schema:name National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China
416 rdf:type schema:Organization
417 https://www.grid.ac/institutes/grid.419751.f schema:alternateName Kenya Agricultural Research Institute
418 schema:name Kenya Agricultural Research Institute (KARI), RRC Mtwapa, P.O. Box 16, Mtwapa, Kenya
419 rdf:type schema:Organization
420 https://www.grid.ac/institutes/grid.433436.5 schema:alternateName International Maize and Wheat Improvement Center
421 schema:name International Maize and Wheat Improvement Center, Apdo. Postal 6-641, 06600, Mexico, D.F., Mexico
422 rdf:type schema:Organization
423 https://www.grid.ac/institutes/grid.5386.8 schema:alternateName Cornell University
424 schema:name Department of Crop and Soil Sciences, Cornell University, 14853, Ithaca, NY, USA
425 rdf:type schema:Organization
426 https://www.grid.ac/institutes/grid.80510.3c schema:alternateName Sichuan Agricultural University
427 schema:name Maize Research Institute, Sichuan Agricultural University, Ya’an, China
428 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...