Evaluation of diagnostic molecular markers for DUS phenotypic assessment in the cereal crop, barley (Hordeum vulgare ssp. vulgare L.) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-12

AUTHORS

James Cockram, Huw Jones, Carol Norris, Donal M. O’Sullivan

ABSTRACT

The deployment of genetic markers is of interest in crop assessment and breeding programmes, due to the potential savings in cost and time afforded. As part of the internationally recognised framework for the awarding of Plant Breeders' Rights (PBR), new barley variety submissions are evaluated using a suite of morphological traits to ensure they are distinct, uniform and stable (DUS) in comparison to all previous submissions. Increasing knowledge of the genetic control of many of these traits provides the opportunity to assess the potential of deploying diagnostic/perfect genetic markers in place of phenotypic assessment. Here, we identify a suite of 25 genetic markers assaying for 14 DUS traits, and implement them using a single genotyping platform (KASPar). Using a panel of 169 UK barley varieties, we show that phenotypic state at three of these traits can be perfectly predicted by genotype. Predictive values for an additional nine traits ranged from 81 to 99 %. Finally, by comparison of varietal discrimination based on phenotype and genotype resulted in correlation of 0.72, indicating that deployment of molecular markers for varietal discrimination could be feasible in the near future. Due to the flexibility of the genotyping platform used, the genetic markers described here can be used in any number or combination, in-house or by outsourcing, allowing flexible deployment by users. These markers are likely to find application where tracking of specific alleles is required in breeding programmes, or for potential use within national assessment programmes for the awarding of PBRs. More... »

PAGES

1735-1749

References to SciGraph publications

  • 2000-11. A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes in THEORETICAL AND APPLIED GENETICS
  • 2008-11. Control of a key transition from prostrate to erect growth in rice domestication in NATURE GENETICS
  • 2005-05. The Vrn-H2 locus is a major determinant of flowering time in a facultative × winter growth habit barley (Hordeum vulgare L.) mapping population in THEORETICAL AND APPLIED GENETICS
  • 2009-11. Molecular markers for establishing distinctness in vegetatively propagated crops: a case study in grapevine in THEORETICAL AND APPLIED GENETICS
  • 2009-12. Development and implementation of high-throughput SNP genotyping in barley in BMC GENOMICS
  • 2002-07. Molecular mapping of the intermedium spike-c (int-c) and non-brittle rachis 1 (btr1) loci in barley (Hordeum vulgare L.) in THEORETICAL AND APPLIED GENETICS
  • 2008-12. Association mapping of partitioning loci in barley in BMC GENETICS
  • 2008-05. Discriminating maize inbred lines using molecular and DUS data in EUPHYTICA
  • 2008-09. Utilization of SSR and AFLP markers for the assessment of distinctness in durum wheat in MOLECULAR BREEDING
  • 2009-05. GA-20 oxidase as a candidate for the semidwarf gene sdw1/denso in barley in FUNCTIONAL & INTEGRATIVE GENOMICS
  • 2010-02. Development and evaluation of robust molecular markers linked to disease resistance in tomato for distinctness, uniformity and stability testing in THEORETICAL AND APPLIED GENETICS
  • 2011-06. Genotype and SNP calling from next-generation sequencing data in NATURE REVIEWS GENETICS
  • 2011-02. INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1 in NATURE GENETICS
  • 2007-11. Haplotype analysis of vernalization loci in European barley germplasm reveals novel VRN-H1 alleles and a predominant winter VRN-H1/VRN-H2 multi-locus haplotype in THEORETICAL AND APPLIED GENETICS
  • 2004-07. Comparative high resolution map of the six‐rowed spike locus 1 (vrs1) in several populations of barley, Hordeum vulgare L. in HEREDITAS
  • 2005-05. Molecular characterization of the allelic variation at the VRN-H2 vernalization locus in barley in MOLECULAR BREEDING
  • 2008-09. Quantitative trait loci associated with adaptation to Mediterranean dryland conditions in barley in THEORETICAL AND APPLIED GENETICS
  • 2005-10. Molecular and Structural Characterization of Barley Vernalization Genes in PLANT MOLECULAR BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00122-012-1950-3

    DOI

    http://dx.doi.org/10.1007/s00122-012-1950-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1034965167

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/22898724


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Alleles", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cluster Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Crops, Agricultural", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Markers", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hordeum", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phenotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymorphism, Single Nucleotide", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Quantitative Trait, Heritable", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Institute of Agricultural Botany", 
              "id": "https://www.grid.ac/institutes/grid.17595.3f", 
              "name": [
                "John Bingham Laboratory, National Institute of Agricultural Botany (NIAB), Huntington Road, CB3 0LE, Cambridge, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cockram", 
            "givenName": "James", 
            "id": "sg:person.01306741741.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306741741.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute of Agricultural Botany", 
              "id": "https://www.grid.ac/institutes/grid.17595.3f", 
              "name": [
                "John Bingham Laboratory, National Institute of Agricultural Botany (NIAB), Huntington Road, CB3 0LE, Cambridge, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jones", 
            "givenName": "Huw", 
            "id": "sg:person.0644355724.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644355724.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute of Agricultural Botany", 
              "id": "https://www.grid.ac/institutes/grid.17595.3f", 
              "name": [
                "John Bingham Laboratory, National Institute of Agricultural Botany (NIAB), Huntington Road, CB3 0LE, Cambridge, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Norris", 
            "givenName": "Carol", 
            "id": "sg:person.01027104712.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027104712.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute of Agricultural Botany", 
              "id": "https://www.grid.ac/institutes/grid.17595.3f", 
              "name": [
                "John Bingham Laboratory, National Institute of Agricultural Botany (NIAB), Huntington Road, CB3 0LE, Cambridge, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "O\u2019Sullivan", 
            "givenName": "Donal M.", 
            "id": "sg:person.01131557000.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131557000.91"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00122-007-0626-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000732460", 
              "https://doi.org/10.1007/s00122-007-0626-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-007-0626-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000732460", 
              "https://doi.org/10.1007/s00122-007-0626-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jxb/erm042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001131446"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1104/pp.103.026195", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003241908"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10142-009-0120-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004297109", 
              "https://doi.org/10.1007/s10142-009-0120-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10142-009-0120-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004297109", 
              "https://doi.org/10.1007/s10142-009-0120-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10142-009-0120-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004297109", 
              "https://doi.org/10.1007/s10142-009-0120-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0608580104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004885795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-009-1183-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005937745", 
              "https://doi.org/10.1007/s00122-009-1183-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-009-1183-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005937745", 
              "https://doi.org/10.1007/s00122-009-1183-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-008-9176-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007060271", 
              "https://doi.org/10.1007/s11032-008-9176-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-009-1122-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008940768", 
              "https://doi.org/10.1007/s00122-009-1122-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-009-1122-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008940768", 
              "https://doi.org/10.1007/s00122-009-1122-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-007-9518-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012003009", 
              "https://doi.org/10.1007/s10681-007-9518-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.107.074765", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013259516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.107.074765", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013259516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1139/g95-074", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016037816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.745", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016279017", 
              "https://doi.org/10.1038/ng.745"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2986", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016983398", 
              "https://doi.org/10.1038/nrg2986"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-001-0858-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017653558", 
              "https://doi.org/10.1007/s00122-001-0858-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-001-0858-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017653558", 
              "https://doi.org/10.1007/s00122-001-0858-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1139/g09-101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018411111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1104/pp.110.171579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021853138"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1071/ar03014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024027474"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001220051584", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028726920", 
              "https://doi.org/10.1007/s001220051584"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001220051584", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028726920", 
              "https://doi.org/10.1007/s001220051584"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-005-0084-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034033739", 
              "https://doi.org/10.1007/s11032-005-0084-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-005-0084-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034033739", 
              "https://doi.org/10.1007/s11032-005-0084-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.pbi.2005.01.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036931624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.197", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037728045", 
              "https://doi.org/10.1038/ng.197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11103-005-0351-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038340348", 
              "https://doi.org/10.1007/s11103-005-0351-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11103-005-0351-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038340348", 
              "https://doi.org/10.1007/s11103-005-0351-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1105/tpc.110.082537", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038998741"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2156-9-16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039132346", 
              "https://doi.org/10.1186/1471-2156-9-16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1010179107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040150773"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti282", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040416489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.106.069500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043440404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.106.069500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043440404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-10-582", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043959525", 
              "https://doi.org/10.1186/1471-2164-10-582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0909097107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044403987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-008-0787-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047494444", 
              "https://doi.org/10.1007/s00122-008-0787-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1139/g10-078", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050657275"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-005-1979-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051147561", 
              "https://doi.org/10.1007/s00122-005-1979-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-005-1979-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051147561", 
              "https://doi.org/10.1007/s00122-005-1979-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1111/j.1601-5223.2004.01820.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053026480", 
              "https://doi.org/10.1111/j.1601-5223.2004.01820.x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1117619", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062452580"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci2008.07.0398", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069030698"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3835/plantgenome2010.07.0016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071447779"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-12", 
        "datePublishedReg": "2012-12-01", 
        "description": "The deployment of genetic markers is of interest in crop assessment and breeding programmes, due to the potential savings in cost and time afforded. As part of the internationally recognised framework for the awarding of Plant Breeders' Rights (PBR), new barley variety submissions are evaluated using a suite of morphological traits to ensure they are distinct, uniform and stable (DUS) in comparison to all previous submissions. Increasing knowledge of the genetic control of many of these traits provides the opportunity to assess the potential of deploying diagnostic/perfect genetic markers in place of phenotypic assessment. Here, we identify a suite of 25 genetic markers assaying for 14 DUS traits, and implement them using a single genotyping platform (KASPar). Using a panel of 169 UK barley varieties, we show that phenotypic state at three of these traits can be perfectly predicted by genotype. Predictive values for an additional nine traits ranged from 81 to 99 %. Finally, by comparison of varietal discrimination based on phenotype and genotype resulted in correlation of 0.72, indicating that deployment of molecular markers for varietal discrimination could be feasible in the near future. Due to the flexibility of the genotyping platform used, the genetic markers described here can be used in any number or combination, in-house or by outsourcing, allowing flexible deployment by users. These markers are likely to find application where tracking of specific alleles is required in breeding programmes, or for potential use within national assessment programmes for the awarding of PBRs.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00122-012-1950-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2769966", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1135804", 
            "issn": [
              "0040-5752", 
              "1432-2242"
            ], 
            "name": "Theoretical and Applied Genetics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "125"
          }
        ], 
        "name": "Evaluation of diagnostic molecular markers for DUS phenotypic assessment in the cereal crop, barley (Hordeum vulgare ssp. vulgare L.)", 
        "pagination": "1735-1749", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a68f4f05a65a1a5289a3c099480b68c4860e1d042a251f93bcaccc529120ddd7"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "22898724"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0145600"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00122-012-1950-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1034965167"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00122-012-1950-3", 
          "https://app.dimensions.ai/details/publication/pub.1034965167"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:11", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000353_0000000353/records_45354_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00122-012-1950-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00122-012-1950-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00122-012-1950-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00122-012-1950-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00122-012-1950-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    258 TRIPLES      21 PREDICATES      75 URIs      31 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00122-012-1950-3 schema:about N181e03766a5a44a19cca4677a390ce6b
    2 N1ebe2b7dccac4176ae85f8b490d1b33a
    3 N3504ab602e85409093c027050362b769
    4 N70ed3bbb1e4b4f338edcbef2d8e55d5f
    5 N7d463f2db1d94235a4a1ad00847fb2bc
    6 Na381692560054cee8b85193d52c5c9d2
    7 Nc6c11bd6e0334969bff8c4a49d0b7540
    8 Nd89382f13a7c484da7b453ddebf29189
    9 Ne9231bf0571e47feb868a7ecbb056f81
    10 Nfa9bf07d4d5c41ea83a010a50a68d270
    11 anzsrc-for:06
    12 anzsrc-for:0604
    13 schema:author N9a0b709ad43f4bbc9c490b7b84f3b487
    14 schema:citation sg:pub.10.1007/s00122-001-0858-0
    15 sg:pub.10.1007/s00122-005-1979-7
    16 sg:pub.10.1007/s00122-007-0626-x
    17 sg:pub.10.1007/s00122-008-0787-2
    18 sg:pub.10.1007/s00122-009-1122-2
    19 sg:pub.10.1007/s00122-009-1183-2
    20 sg:pub.10.1007/s001220051584
    21 sg:pub.10.1007/s10142-009-0120-4
    22 sg:pub.10.1007/s10681-007-9518-z
    23 sg:pub.10.1007/s11032-005-0084-6
    24 sg:pub.10.1007/s11032-008-9176-4
    25 sg:pub.10.1007/s11103-005-0351-2
    26 sg:pub.10.1038/ng.197
    27 sg:pub.10.1038/ng.745
    28 sg:pub.10.1038/nrg2986
    29 sg:pub.10.1111/j.1601-5223.2004.01820.x
    30 sg:pub.10.1186/1471-2156-9-16
    31 sg:pub.10.1186/1471-2164-10-582
    32 https://doi.org/10.1016/j.pbi.2005.01.005
    33 https://doi.org/10.1071/ar03014
    34 https://doi.org/10.1073/pnas.0608580104
    35 https://doi.org/10.1073/pnas.0909097107
    36 https://doi.org/10.1073/pnas.1010179107
    37 https://doi.org/10.1093/bioinformatics/bti282
    38 https://doi.org/10.1093/jxb/erm042
    39 https://doi.org/10.1104/pp.103.026195
    40 https://doi.org/10.1104/pp.110.171579
    41 https://doi.org/10.1105/tpc.110.082537
    42 https://doi.org/10.1126/science.1117619
    43 https://doi.org/10.1139/g09-101
    44 https://doi.org/10.1139/g10-078
    45 https://doi.org/10.1139/g95-074
    46 https://doi.org/10.1534/genetics.106.069500
    47 https://doi.org/10.1534/genetics.107.074765
    48 https://doi.org/10.2135/cropsci2008.07.0398
    49 https://doi.org/10.3835/plantgenome2010.07.0016
    50 schema:datePublished 2012-12
    51 schema:datePublishedReg 2012-12-01
    52 schema:description The deployment of genetic markers is of interest in crop assessment and breeding programmes, due to the potential savings in cost and time afforded. As part of the internationally recognised framework for the awarding of Plant Breeders' Rights (PBR), new barley variety submissions are evaluated using a suite of morphological traits to ensure they are distinct, uniform and stable (DUS) in comparison to all previous submissions. Increasing knowledge of the genetic control of many of these traits provides the opportunity to assess the potential of deploying diagnostic/perfect genetic markers in place of phenotypic assessment. Here, we identify a suite of 25 genetic markers assaying for 14 DUS traits, and implement them using a single genotyping platform (KASPar). Using a panel of 169 UK barley varieties, we show that phenotypic state at three of these traits can be perfectly predicted by genotype. Predictive values for an additional nine traits ranged from 81 to 99 %. Finally, by comparison of varietal discrimination based on phenotype and genotype resulted in correlation of 0.72, indicating that deployment of molecular markers for varietal discrimination could be feasible in the near future. Due to the flexibility of the genotyping platform used, the genetic markers described here can be used in any number or combination, in-house or by outsourcing, allowing flexible deployment by users. These markers are likely to find application where tracking of specific alleles is required in breeding programmes, or for potential use within national assessment programmes for the awarding of PBRs.
    53 schema:genre research_article
    54 schema:inLanguage en
    55 schema:isAccessibleForFree false
    56 schema:isPartOf N9943f903b38042e5bb3994c32661c90f
    57 Nec34672098e645bb91368d38b04d5829
    58 sg:journal.1135804
    59 schema:name Evaluation of diagnostic molecular markers for DUS phenotypic assessment in the cereal crop, barley (Hordeum vulgare ssp. vulgare L.)
    60 schema:pagination 1735-1749
    61 schema:productId N17518aa795744cba8b92427e64f3aeb8
    62 N201c70d4e4cb4b748761cf9f4e3d854b
    63 N9534f970fd054a81864f50994e4f7a43
    64 N9df12b4f8d20419083029c988932402f
    65 Nb279437809c6447abf35a4bdd4d9908d
    66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034965167
    67 https://doi.org/10.1007/s00122-012-1950-3
    68 schema:sdDatePublished 2019-04-11T11:11
    69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    70 schema:sdPublisher N9106123e65fb462f81bbd3b2e6b75720
    71 schema:url http://link.springer.com/10.1007%2Fs00122-012-1950-3
    72 sgo:license sg:explorer/license/
    73 sgo:sdDataset articles
    74 rdf:type schema:ScholarlyArticle
    75 N17518aa795744cba8b92427e64f3aeb8 schema:name doi
    76 schema:value 10.1007/s00122-012-1950-3
    77 rdf:type schema:PropertyValue
    78 N181e03766a5a44a19cca4677a390ce6b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    79 schema:name Reproducibility of Results
    80 rdf:type schema:DefinedTerm
    81 N1ebe2b7dccac4176ae85f8b490d1b33a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    82 schema:name Crops, Agricultural
    83 rdf:type schema:DefinedTerm
    84 N201c70d4e4cb4b748761cf9f4e3d854b schema:name pubmed_id
    85 schema:value 22898724
    86 rdf:type schema:PropertyValue
    87 N25b65c26502d41809fa9143c662d7f24 rdf:first sg:person.01131557000.91
    88 rdf:rest rdf:nil
    89 N3504ab602e85409093c027050362b769 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    90 schema:name Cluster Analysis
    91 rdf:type schema:DefinedTerm
    92 N3f196a118d0441d9a76a2b4d6719c3e9 rdf:first sg:person.0644355724.14
    93 rdf:rest N798f5c92bd444840be1316e472965639
    94 N70ed3bbb1e4b4f338edcbef2d8e55d5f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Genotype
    96 rdf:type schema:DefinedTerm
    97 N798f5c92bd444840be1316e472965639 rdf:first sg:person.01027104712.55
    98 rdf:rest N25b65c26502d41809fa9143c662d7f24
    99 N7d463f2db1d94235a4a1ad00847fb2bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name Genetic Markers
    101 rdf:type schema:DefinedTerm
    102 N9106123e65fb462f81bbd3b2e6b75720 schema:name Springer Nature - SN SciGraph project
    103 rdf:type schema:Organization
    104 N9534f970fd054a81864f50994e4f7a43 schema:name dimensions_id
    105 schema:value pub.1034965167
    106 rdf:type schema:PropertyValue
    107 N9943f903b38042e5bb3994c32661c90f schema:issueNumber 8
    108 rdf:type schema:PublicationIssue
    109 N9a0b709ad43f4bbc9c490b7b84f3b487 rdf:first sg:person.01306741741.86
    110 rdf:rest N3f196a118d0441d9a76a2b4d6719c3e9
    111 N9df12b4f8d20419083029c988932402f schema:name readcube_id
    112 schema:value a68f4f05a65a1a5289a3c099480b68c4860e1d042a251f93bcaccc529120ddd7
    113 rdf:type schema:PropertyValue
    114 Na381692560054cee8b85193d52c5c9d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Hordeum
    116 rdf:type schema:DefinedTerm
    117 Nb279437809c6447abf35a4bdd4d9908d schema:name nlm_unique_id
    118 schema:value 0145600
    119 rdf:type schema:PropertyValue
    120 Nc6c11bd6e0334969bff8c4a49d0b7540 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Quantitative Trait, Heritable
    122 rdf:type schema:DefinedTerm
    123 Nd89382f13a7c484da7b453ddebf29189 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Polymorphism, Single Nucleotide
    125 rdf:type schema:DefinedTerm
    126 Ne9231bf0571e47feb868a7ecbb056f81 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Phenotype
    128 rdf:type schema:DefinedTerm
    129 Nec34672098e645bb91368d38b04d5829 schema:volumeNumber 125
    130 rdf:type schema:PublicationVolume
    131 Nfa9bf07d4d5c41ea83a010a50a68d270 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Alleles
    133 rdf:type schema:DefinedTerm
    134 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    135 schema:name Biological Sciences
    136 rdf:type schema:DefinedTerm
    137 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    138 schema:name Genetics
    139 rdf:type schema:DefinedTerm
    140 sg:grant.2769966 http://pending.schema.org/fundedItem sg:pub.10.1007/s00122-012-1950-3
    141 rdf:type schema:MonetaryGrant
    142 sg:journal.1135804 schema:issn 0040-5752
    143 1432-2242
    144 schema:name Theoretical and Applied Genetics
    145 rdf:type schema:Periodical
    146 sg:person.01027104712.55 schema:affiliation https://www.grid.ac/institutes/grid.17595.3f
    147 schema:familyName Norris
    148 schema:givenName Carol
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027104712.55
    150 rdf:type schema:Person
    151 sg:person.01131557000.91 schema:affiliation https://www.grid.ac/institutes/grid.17595.3f
    152 schema:familyName O’Sullivan
    153 schema:givenName Donal M.
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131557000.91
    155 rdf:type schema:Person
    156 sg:person.01306741741.86 schema:affiliation https://www.grid.ac/institutes/grid.17595.3f
    157 schema:familyName Cockram
    158 schema:givenName James
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306741741.86
    160 rdf:type schema:Person
    161 sg:person.0644355724.14 schema:affiliation https://www.grid.ac/institutes/grid.17595.3f
    162 schema:familyName Jones
    163 schema:givenName Huw
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644355724.14
    165 rdf:type schema:Person
    166 sg:pub.10.1007/s00122-001-0858-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017653558
    167 https://doi.org/10.1007/s00122-001-0858-0
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/s00122-005-1979-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051147561
    170 https://doi.org/10.1007/s00122-005-1979-7
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/s00122-007-0626-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000732460
    173 https://doi.org/10.1007/s00122-007-0626-x
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/s00122-008-0787-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047494444
    176 https://doi.org/10.1007/s00122-008-0787-2
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/s00122-009-1122-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008940768
    179 https://doi.org/10.1007/s00122-009-1122-2
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s00122-009-1183-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005937745
    182 https://doi.org/10.1007/s00122-009-1183-2
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s001220051584 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028726920
    185 https://doi.org/10.1007/s001220051584
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s10142-009-0120-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004297109
    188 https://doi.org/10.1007/s10142-009-0120-4
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/s10681-007-9518-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1012003009
    191 https://doi.org/10.1007/s10681-007-9518-z
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/s11032-005-0084-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034033739
    194 https://doi.org/10.1007/s11032-005-0084-6
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/s11032-008-9176-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007060271
    197 https://doi.org/10.1007/s11032-008-9176-4
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s11103-005-0351-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038340348
    200 https://doi.org/10.1007/s11103-005-0351-2
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/ng.197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037728045
    203 https://doi.org/10.1038/ng.197
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/ng.745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016279017
    206 https://doi.org/10.1038/ng.745
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/nrg2986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016983398
    209 https://doi.org/10.1038/nrg2986
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1111/j.1601-5223.2004.01820.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053026480
    212 https://doi.org/10.1111/j.1601-5223.2004.01820.x
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1186/1471-2156-9-16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039132346
    215 https://doi.org/10.1186/1471-2156-9-16
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1186/1471-2164-10-582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043959525
    218 https://doi.org/10.1186/1471-2164-10-582
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1016/j.pbi.2005.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036931624
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1071/ar03014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024027474
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1073/pnas.0608580104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004885795
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1073/pnas.0909097107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044403987
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1073/pnas.1010179107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040150773
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1093/bioinformatics/bti282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040416489
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1093/jxb/erm042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001131446
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1104/pp.103.026195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003241908
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1104/pp.110.171579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021853138
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1105/tpc.110.082537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038998741
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1126/science.1117619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062452580
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1139/g09-101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018411111
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1139/g10-078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050657275
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1139/g95-074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016037816
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1534/genetics.106.069500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043440404
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1534/genetics.107.074765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013259516
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.2135/cropsci2008.07.0398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069030698
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.3835/plantgenome2010.07.0016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071447779
    255 rdf:type schema:CreativeWork
    256 https://www.grid.ac/institutes/grid.17595.3f schema:alternateName National Institute of Agricultural Botany
    257 schema:name John Bingham Laboratory, National Institute of Agricultural Botany (NIAB), Huntington Road, CB3 0LE, Cambridge, UK
    258 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...