QTL mapping of yield-associated traits in Brassica juncea: meta-analysis and epistatic interactions using two different crosses between east European and ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-11

AUTHORS

Satish Kumar Yadava, N. Arumugam, Arundhati Mukhopadhyay, Yashpal Singh Sodhi, Vibha Gupta, Deepak Pental, Akshay K. Pradhan

ABSTRACT

Genetic analysis of 12 yield-associated traits was undertaken by dissection of quantitative trait loci (QTL) through meta-analysis and epistatic interaction studies in Brassica juncea. A consensus (integrated) map in B. juncea was constructed using two maps. These were VH map, developed earlier in the laboratory by using a DH population from the cross between Varuna and Heera (Pradhan et al. in Theor Appl Genet 106:607-614, 2003; Ramchiary et al. in Theor Appl Genet. 115:807-817, 2007; Panjabi et al. in BMC Genomics 9:113, 2008), and the TD map, developed in the present study using a DH population of 100 lines from the cross between TM-4 and Donskaja-IV. The TD map was constructed with 911 markers consisting of 585 AFLP, 8 SSR and 318 IP markers covering a total genome length of 1,629.9 cM. The consensus map constructed by using the common markers between the two maps contained a total of 2,662 markers and covered a total genome length of 1,927.1 cM. Firstly, QTL analysis of 12 yield-associated traits was undertaken for the TD population based on three-environment phenotypic data. Secondly, the three-environment phenotypic data for the same 12 quantitative traits generated by Ramchiary et al. (2007) were re-analyzed for the QTL detection in the VH map. Comparative analysis identified both common and population-specific QTL. The study revealed the presence of QTL clusters on LG A7, A8 and A10 in both TD and VH maps. Meta-analyses resolved 187 QTL distributed over nine linkage groups of TD and VH maps into 20 meta-QTL. Maximum resolution was recorded for the LG A10 wherein all the 54 QTL were mapped to a single meta-QTL within a confidence interval of 3.0 cM. Digenic epistatic interactions of QTL in both TD and VH maps revealed substantial additive × additive interactions showing a higher frequency of Type 1 and Type 2 interactions than Type 3 interactions. Some of the loci interacted with more than one locus indicating the presence of higher order epistatic interactions. These findings provided some detailed insight into the genetic architecture of the yield-associated traits in B. juncea. More... »

PAGES

1553-1564

References to SciGraph publications

  • 1993-01. Heterosis breeding in Indian mustard (Brassica juncea L. Czern & Coss): Analysis of component characters contributing to heterosis for yield in EUPHYTICA
  • 1994. Extraction of total cellular DNA from plants, algae and fungi in PLANT MOLECULAR BIOLOGY MANUAL
  • 2011-12. Meta-analysis of grain yield QTL identified during agricultural drought in grasses showed consensus in BMC GENOMICS
  • 2006-12. A new cytoplasmic male sterility system for hybrid seed production in Indian oilseed mustard Brassica juncea in THEORETICAL AND APPLIED GENETICS
  • 2001-02. AFLP-based genetic diversity assessment amongst agronomically important natural and some newly synthesized lines of Brassica juncea in THEORETICAL AND APPLIED GENETICS
  • 2010-01. Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.) in THEORETICAL AND APPLIED GENETICS
  • 2008-12. Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes in BMC GENOMICS
  • 2003-02. A high-density linkage map in Brassica juncea (Indian mustard) using AFLP and RFLP markers in THEORETICAL AND APPLIED GENETICS
  • 1994-04. Potential use of random amplified polymorphic DNA (RAPD) technique to study the genetic diversity in Indian mustard (Brassica juncea) and its relationship to heterosis in THEORETICAL AND APPLIED GENETICS
  • 2006-08. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2. Identification of alleles from unadapted germplasm in THEORETICAL AND APPLIED GENETICS
  • 2001-05. The flexible genome in NATURE REVIEWS GENETICS
  • 2008-01. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations in THEORETICAL AND APPLIED GENETICS
  • 2008-12. Comparative QTL mapping of resistance to sugarcane mosaic virus in maize based on bioinformatics in FRONTIERS OF AGRICULTURE IN CHINA
  • 2007-10. Mapping of yield influencing QTL in Brassica juncea: implications for breeding of a major oilseed crop of dryland areas in THEORETICAL AND APPLIED GENETICS
  • 2006-08. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. Identification of genomic regions from winter germplasm in THEORETICAL AND APPLIED GENETICS
  • 2007-02. Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis in THEORETICAL AND APPLIED GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00122-012-1934-3

    DOI

    http://dx.doi.org/10.1007/s00122-012-1934-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1022239797

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/22821338


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosome Mapping", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosomes, Plant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Crosses, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Epistasis, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Europe", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Pool", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetics, Population", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "India", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mustard Plant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phenotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Quantitative Trait Loci", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Quantitative Trait, Heritable", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Delhi", 
              "id": "https://www.grid.ac/institutes/grid.8195.5", 
              "name": [
                "Department of Genetics, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yadava", 
            "givenName": "Satish Kumar", 
            "id": "sg:person.01017473354.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017473354.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Pondicherry University", 
              "id": "https://www.grid.ac/institutes/grid.412517.4", 
              "name": [
                "Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India", 
                "Department of Biotechnology, Pondicherry University, 605014, Puducherry, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Arumugam", 
            "givenName": "N.", 
            "id": "sg:person.01133244757.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133244757.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Delhi", 
              "id": "https://www.grid.ac/institutes/grid.8195.5", 
              "name": [
                "Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mukhopadhyay", 
            "givenName": "Arundhati", 
            "id": "sg:person.0674770440.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674770440.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Delhi", 
              "id": "https://www.grid.ac/institutes/grid.8195.5", 
              "name": [
                "Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sodhi", 
            "givenName": "Yashpal Singh", 
            "id": "sg:person.0754200671.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754200671.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Delhi", 
              "id": "https://www.grid.ac/institutes/grid.8195.5", 
              "name": [
                "Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gupta", 
            "givenName": "Vibha", 
            "id": "sg:person.0707106054.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707106054.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Delhi", 
              "id": "https://www.grid.ac/institutes/grid.8195.5", 
              "name": [
                "Department of Genetics, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India", 
                "Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pental", 
            "givenName": "Deepak", 
            "id": "sg:person.01230565713.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230565713.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Delhi", 
              "id": "https://www.grid.ac/institutes/grid.8195.5", 
              "name": [
                "Department of Genetics, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India", 
                "Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pradhan", 
            "givenName": "Akshay K.", 
            "id": "sg:person.01137563054.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137563054.00"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00122-007-0610-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000587413", 
              "https://doi.org/10.1007/s00122-007-0610-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-007-0610-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000587413", 
              "https://doi.org/10.1007/s00122-007-0610-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-006-0413-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003326201", 
              "https://doi.org/10.1007/s00122-006-0413-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-006-0413-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003326201", 
              "https://doi.org/10.1007/s00122-006-0413-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11703-008-0081-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006863018", 
              "https://doi.org/10.1007/s11703-008-0081-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/aob/mcf134", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007428666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/aob/mcr323", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010480589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-9-113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011621370", 
              "https://doi.org/10.1186/1471-2164-9-113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.109.101642", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012256994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.109.101642", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012256994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-002-1083-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012983945", 
              "https://doi.org/10.1007/s00122-002-1083-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-006-0323-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013764536", 
              "https://doi.org/10.1007/s00122-006-0323-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-006-0323-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013764536", 
              "https://doi.org/10.1007/s00122-006-0323-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.107.074518", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014780985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.107.074518", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014780985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-12-319", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016085778", 
              "https://doi.org/10.1186/1471-2164-12-319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00022368", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016943654", 
              "https://doi.org/10.1007/bf00022368"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00022368", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016943654", 
              "https://doi.org/10.1007/bf00022368"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.107.077537", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019791097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.107.077537", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019791097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1469-1809.1943.tb02321.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020384561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-011-0511-8_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020790088", 
              "https://doi.org/10.1007/978-94-011-0511-8_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001220051635", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026795799", 
              "https://doi.org/10.1007/s001220051635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001220051635", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026795799", 
              "https://doi.org/10.1007/s001220051635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btm143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029867719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.104.032375", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031153348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.104.032375", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031153348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-006-0459-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033259454", 
              "https://doi.org/10.1007/s00122-006-0459-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-006-0459-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033259454", 
              "https://doi.org/10.1007/s00122-006-0459-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jhered/93.1.77", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035613632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35072018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037147561", 
              "https://doi.org/10.1038/35072018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35072018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037147561", 
              "https://doi.org/10.1038/35072018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-009-1133-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037193879", 
              "https://doi.org/10.1007/s00122-009-1133-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-009-1133-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037193879", 
              "https://doi.org/10.1007/s00122-009-1133-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-009-1133-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037193879", 
              "https://doi.org/10.1007/s00122-009-1133-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-007-0663-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037875984", 
              "https://doi.org/10.1007/s00122-007-0663-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-007-0663-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037875984", 
              "https://doi.org/10.1007/s00122-007-0663-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.108.089680", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037921872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.108.089680", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037921872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.94.17.9226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041210769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bth230", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047038250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-006-0324-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049002173", 
              "https://doi.org/10.1007/s00122-006-0324-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-006-0324-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049002173", 
              "https://doi.org/10.1007/s00122-006-0324-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00222403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051396987", 
              "https://doi.org/10.1007/bf00222403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci2004.0560", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069028564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074867917", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074867918", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082535482", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082948111", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-11", 
        "datePublishedReg": "2012-11-01", 
        "description": "Genetic analysis of 12 yield-associated traits was undertaken by dissection of quantitative trait loci (QTL) through meta-analysis and epistatic interaction studies in Brassica juncea. A consensus (integrated) map in B. juncea was constructed using two maps. These were VH map, developed earlier in the laboratory by using a DH population from the cross between Varuna and Heera (Pradhan et al. in Theor Appl Genet 106:607-614, 2003; Ramchiary et al. in Theor Appl Genet. 115:807-817, 2007; Panjabi et al. in BMC Genomics 9:113, 2008), and the TD map, developed in the present study using a DH population of 100 lines from the cross between TM-4 and Donskaja-IV. The TD map was constructed with 911 markers consisting of 585 AFLP, 8 SSR and 318 IP markers covering a total genome length of 1,629.9 cM. The consensus map constructed by using the common markers between the two maps contained a total of 2,662 markers and covered a total genome length of 1,927.1 cM. Firstly, QTL analysis of 12 yield-associated traits was undertaken for the TD population based on three-environment phenotypic data. Secondly, the three-environment phenotypic data for the same 12 quantitative traits generated by Ramchiary et al. (2007) were re-analyzed for the QTL detection in the VH map. Comparative analysis identified both common and population-specific QTL. The study revealed the presence of QTL clusters on LG A7, A8 and A10 in both TD and VH maps. Meta-analyses resolved 187 QTL distributed over nine linkage groups of TD and VH maps into 20 meta-QTL. Maximum resolution was recorded for the LG A10 wherein all the 54 QTL were mapped to a single meta-QTL within a confidence interval of 3.0 cM. Digenic epistatic interactions of QTL in both TD and VH maps revealed substantial additive \u00d7 additive interactions showing a higher frequency of Type 1 and Type 2 interactions than Type 3 interactions. Some of the loci interacted with more than one locus indicating the presence of higher order epistatic interactions. These findings provided some detailed insight into the genetic architecture of the yield-associated traits in B. juncea.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00122-012-1934-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1135804", 
            "issn": [
              "0040-5752", 
              "1432-2242"
            ], 
            "name": "Theoretical and Applied Genetics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "125"
          }
        ], 
        "name": "QTL mapping of yield-associated traits in Brassica juncea: meta-analysis and epistatic interactions using two different crosses between east European and Indian gene pool lines", 
        "pagination": "1553-1564", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "69f46b0d950515d35148f17a99ffb9ee06246413870c2280d449c7c01d7eeaf1"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "22821338"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0145600"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00122-012-1934-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1022239797"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00122-012-1934-3", 
          "https://app.dimensions.ai/details/publication/pub.1022239797"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000505.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00122-012-1934-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00122-012-1934-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00122-012-1934-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00122-012-1934-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00122-012-1934-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    275 TRIPLES      21 PREDICATES      74 URIs      33 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00122-012-1934-3 schema:about N11dab9e9ea5f40d4950c6199372bb851
    2 N2dd59ab08cce45a888e2baf56896d974
    3 N3774c093844f4588a73816c3c526f687
    4 N4a2278197f404a40ae0338820d2e227d
    5 N4d66d839693e436ab46dfb4f4a61b91d
    6 N579522cec729448189f6be2d87ca6b6c
    7 N5cc99bfc3a574f0086515c123a1c830a
    8 N6ed2354b71c540cfbee3b0fbe91d1e27
    9 Na450e29363884077810817945350f74f
    10 Nd204774e08714fbebcda91b50b6fe464
    11 Nd6e718c197074310a7354a4eeb11e617
    12 Nf04a6b9099044951b8a65b690909b19d
    13 anzsrc-for:06
    14 anzsrc-for:0604
    15 schema:author N1b08c8b29edc4056983eb9c26abc2f4b
    16 schema:citation sg:pub.10.1007/978-94-011-0511-8_12
    17 sg:pub.10.1007/bf00022368
    18 sg:pub.10.1007/bf00222403
    19 sg:pub.10.1007/s00122-002-1083-1
    20 sg:pub.10.1007/s00122-006-0323-1
    21 sg:pub.10.1007/s00122-006-0324-0
    22 sg:pub.10.1007/s00122-006-0413-0
    23 sg:pub.10.1007/s00122-006-0459-z
    24 sg:pub.10.1007/s00122-007-0610-5
    25 sg:pub.10.1007/s00122-007-0663-5
    26 sg:pub.10.1007/s00122-009-1133-z
    27 sg:pub.10.1007/s001220051635
    28 sg:pub.10.1007/s11703-008-0081-8
    29 sg:pub.10.1038/35072018
    30 sg:pub.10.1186/1471-2164-12-319
    31 sg:pub.10.1186/1471-2164-9-113
    32 https://app.dimensions.ai/details/publication/pub.1074867917
    33 https://app.dimensions.ai/details/publication/pub.1074867918
    34 https://app.dimensions.ai/details/publication/pub.1082535482
    35 https://app.dimensions.ai/details/publication/pub.1082948111
    36 https://doi.org/10.1073/pnas.94.17.9226
    37 https://doi.org/10.1093/aob/mcf134
    38 https://doi.org/10.1093/aob/mcr323
    39 https://doi.org/10.1093/bioinformatics/bth230
    40 https://doi.org/10.1093/bioinformatics/btm143
    41 https://doi.org/10.1093/jhered/93.1.77
    42 https://doi.org/10.1111/j.1469-1809.1943.tb02321.x
    43 https://doi.org/10.1534/genetics.104.032375
    44 https://doi.org/10.1534/genetics.107.074518
    45 https://doi.org/10.1534/genetics.107.077537
    46 https://doi.org/10.1534/genetics.108.089680
    47 https://doi.org/10.1534/genetics.109.101642
    48 https://doi.org/10.2135/cropsci2004.0560
    49 schema:datePublished 2012-11
    50 schema:datePublishedReg 2012-11-01
    51 schema:description Genetic analysis of 12 yield-associated traits was undertaken by dissection of quantitative trait loci (QTL) through meta-analysis and epistatic interaction studies in Brassica juncea. A consensus (integrated) map in B. juncea was constructed using two maps. These were VH map, developed earlier in the laboratory by using a DH population from the cross between Varuna and Heera (Pradhan et al. in Theor Appl Genet 106:607-614, 2003; Ramchiary et al. in Theor Appl Genet. 115:807-817, 2007; Panjabi et al. in BMC Genomics 9:113, 2008), and the TD map, developed in the present study using a DH population of 100 lines from the cross between TM-4 and Donskaja-IV. The TD map was constructed with 911 markers consisting of 585 AFLP, 8 SSR and 318 IP markers covering a total genome length of 1,629.9 cM. The consensus map constructed by using the common markers between the two maps contained a total of 2,662 markers and covered a total genome length of 1,927.1 cM. Firstly, QTL analysis of 12 yield-associated traits was undertaken for the TD population based on three-environment phenotypic data. Secondly, the three-environment phenotypic data for the same 12 quantitative traits generated by Ramchiary et al. (2007) were re-analyzed for the QTL detection in the VH map. Comparative analysis identified both common and population-specific QTL. The study revealed the presence of QTL clusters on LG A7, A8 and A10 in both TD and VH maps. Meta-analyses resolved 187 QTL distributed over nine linkage groups of TD and VH maps into 20 meta-QTL. Maximum resolution was recorded for the LG A10 wherein all the 54 QTL were mapped to a single meta-QTL within a confidence interval of 3.0 cM. Digenic epistatic interactions of QTL in both TD and VH maps revealed substantial additive × additive interactions showing a higher frequency of Type 1 and Type 2 interactions than Type 3 interactions. Some of the loci interacted with more than one locus indicating the presence of higher order epistatic interactions. These findings provided some detailed insight into the genetic architecture of the yield-associated traits in B. juncea.
    52 schema:genre research_article
    53 schema:inLanguage en
    54 schema:isAccessibleForFree false
    55 schema:isPartOf N740495538483453f8798e45c893644e8
    56 Nca654b4a420c44cd9f251465e613421f
    57 sg:journal.1135804
    58 schema:name QTL mapping of yield-associated traits in Brassica juncea: meta-analysis and epistatic interactions using two different crosses between east European and Indian gene pool lines
    59 schema:pagination 1553-1564
    60 schema:productId N212cb41401504a058f1a451e5b794c3b
    61 N2c10dd4890f94b1fb644ee4cf458cccb
    62 N492aea6087e7409c96aaff13462563e4
    63 N7cfb872dbdce418aacf344f627b1c737
    64 N96afb1acc6814fb6a7e5e6d0a865bd7c
    65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022239797
    66 https://doi.org/10.1007/s00122-012-1934-3
    67 schema:sdDatePublished 2019-04-10T14:07
    68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    69 schema:sdPublisher N7123506ef28543fb875f53bb6a93255b
    70 schema:url http://link.springer.com/10.1007%2Fs00122-012-1934-3
    71 sgo:license sg:explorer/license/
    72 sgo:sdDataset articles
    73 rdf:type schema:ScholarlyArticle
    74 N021f13cebfee45138eddfece483ee9e2 rdf:first sg:person.0754200671.50
    75 rdf:rest N9ef78bf226c0493582df844226faa52e
    76 N11dab9e9ea5f40d4950c6199372bb851 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    77 schema:name Mustard Plant
    78 rdf:type schema:DefinedTerm
    79 N1b08c8b29edc4056983eb9c26abc2f4b rdf:first sg:person.01017473354.36
    80 rdf:rest N2c62963cefdd4247ac5b59a48d9e7be0
    81 N212cb41401504a058f1a451e5b794c3b schema:name dimensions_id
    82 schema:value pub.1022239797
    83 rdf:type schema:PropertyValue
    84 N2c10dd4890f94b1fb644ee4cf458cccb schema:name pubmed_id
    85 schema:value 22821338
    86 rdf:type schema:PropertyValue
    87 N2c62963cefdd4247ac5b59a48d9e7be0 rdf:first sg:person.01133244757.39
    88 rdf:rest N5ce88a85414c42c8b5b2f3ef35185b77
    89 N2dd59ab08cce45a888e2baf56896d974 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    90 schema:name Chromosome Mapping
    91 rdf:type schema:DefinedTerm
    92 N3774c093844f4588a73816c3c526f687 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    93 schema:name Crosses, Genetic
    94 rdf:type schema:DefinedTerm
    95 N3ac1ac65d5e2408eb0fae01ed22da674 rdf:first sg:person.01230565713.24
    96 rdf:rest N93773f6a4dca4e0e938f92e5ce7516cf
    97 N492aea6087e7409c96aaff13462563e4 schema:name doi
    98 schema:value 10.1007/s00122-012-1934-3
    99 rdf:type schema:PropertyValue
    100 N4a2278197f404a40ae0338820d2e227d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Europe
    102 rdf:type schema:DefinedTerm
    103 N4d66d839693e436ab46dfb4f4a61b91d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Genetics, Population
    105 rdf:type schema:DefinedTerm
    106 N579522cec729448189f6be2d87ca6b6c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Chromosomes, Plant
    108 rdf:type schema:DefinedTerm
    109 N5cc99bfc3a574f0086515c123a1c830a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Quantitative Trait, Heritable
    111 rdf:type schema:DefinedTerm
    112 N5ce88a85414c42c8b5b2f3ef35185b77 rdf:first sg:person.0674770440.54
    113 rdf:rest N021f13cebfee45138eddfece483ee9e2
    114 N6ed2354b71c540cfbee3b0fbe91d1e27 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name Epistasis, Genetic
    116 rdf:type schema:DefinedTerm
    117 N7123506ef28543fb875f53bb6a93255b schema:name Springer Nature - SN SciGraph project
    118 rdf:type schema:Organization
    119 N740495538483453f8798e45c893644e8 schema:volumeNumber 125
    120 rdf:type schema:PublicationVolume
    121 N7cfb872dbdce418aacf344f627b1c737 schema:name nlm_unique_id
    122 schema:value 0145600
    123 rdf:type schema:PropertyValue
    124 N93773f6a4dca4e0e938f92e5ce7516cf rdf:first sg:person.01137563054.00
    125 rdf:rest rdf:nil
    126 N96afb1acc6814fb6a7e5e6d0a865bd7c schema:name readcube_id
    127 schema:value 69f46b0d950515d35148f17a99ffb9ee06246413870c2280d449c7c01d7eeaf1
    128 rdf:type schema:PropertyValue
    129 N9ef78bf226c0493582df844226faa52e rdf:first sg:person.0707106054.43
    130 rdf:rest N3ac1ac65d5e2408eb0fae01ed22da674
    131 Na450e29363884077810817945350f74f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Phenotype
    133 rdf:type schema:DefinedTerm
    134 Nca654b4a420c44cd9f251465e613421f schema:issueNumber 7
    135 rdf:type schema:PublicationIssue
    136 Nd204774e08714fbebcda91b50b6fe464 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Quantitative Trait Loci
    138 rdf:type schema:DefinedTerm
    139 Nd6e718c197074310a7354a4eeb11e617 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name India
    141 rdf:type schema:DefinedTerm
    142 Nf04a6b9099044951b8a65b690909b19d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Gene Pool
    144 rdf:type schema:DefinedTerm
    145 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    146 schema:name Biological Sciences
    147 rdf:type schema:DefinedTerm
    148 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    149 schema:name Genetics
    150 rdf:type schema:DefinedTerm
    151 sg:journal.1135804 schema:issn 0040-5752
    152 1432-2242
    153 schema:name Theoretical and Applied Genetics
    154 rdf:type schema:Periodical
    155 sg:person.01017473354.36 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
    156 schema:familyName Yadava
    157 schema:givenName Satish Kumar
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017473354.36
    159 rdf:type schema:Person
    160 sg:person.01133244757.39 schema:affiliation https://www.grid.ac/institutes/grid.412517.4
    161 schema:familyName Arumugam
    162 schema:givenName N.
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133244757.39
    164 rdf:type schema:Person
    165 sg:person.01137563054.00 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
    166 schema:familyName Pradhan
    167 schema:givenName Akshay K.
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137563054.00
    169 rdf:type schema:Person
    170 sg:person.01230565713.24 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
    171 schema:familyName Pental
    172 schema:givenName Deepak
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230565713.24
    174 rdf:type schema:Person
    175 sg:person.0674770440.54 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
    176 schema:familyName Mukhopadhyay
    177 schema:givenName Arundhati
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674770440.54
    179 rdf:type schema:Person
    180 sg:person.0707106054.43 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
    181 schema:familyName Gupta
    182 schema:givenName Vibha
    183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707106054.43
    184 rdf:type schema:Person
    185 sg:person.0754200671.50 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
    186 schema:familyName Sodhi
    187 schema:givenName Yashpal Singh
    188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754200671.50
    189 rdf:type schema:Person
    190 sg:pub.10.1007/978-94-011-0511-8_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020790088
    191 https://doi.org/10.1007/978-94-011-0511-8_12
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/bf00022368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016943654
    194 https://doi.org/10.1007/bf00022368
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/bf00222403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051396987
    197 https://doi.org/10.1007/bf00222403
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s00122-002-1083-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012983945
    200 https://doi.org/10.1007/s00122-002-1083-1
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s00122-006-0323-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013764536
    203 https://doi.org/10.1007/s00122-006-0323-1
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s00122-006-0324-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049002173
    206 https://doi.org/10.1007/s00122-006-0324-0
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/s00122-006-0413-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003326201
    209 https://doi.org/10.1007/s00122-006-0413-0
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/s00122-006-0459-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1033259454
    212 https://doi.org/10.1007/s00122-006-0459-z
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/s00122-007-0610-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000587413
    215 https://doi.org/10.1007/s00122-007-0610-5
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/s00122-007-0663-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037875984
    218 https://doi.org/10.1007/s00122-007-0663-5
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/s00122-009-1133-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1037193879
    221 https://doi.org/10.1007/s00122-009-1133-z
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/s001220051635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026795799
    224 https://doi.org/10.1007/s001220051635
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/s11703-008-0081-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006863018
    227 https://doi.org/10.1007/s11703-008-0081-8
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/35072018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037147561
    230 https://doi.org/10.1038/35072018
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1186/1471-2164-12-319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016085778
    233 https://doi.org/10.1186/1471-2164-12-319
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1186/1471-2164-9-113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011621370
    236 https://doi.org/10.1186/1471-2164-9-113
    237 rdf:type schema:CreativeWork
    238 https://app.dimensions.ai/details/publication/pub.1074867917 schema:CreativeWork
    239 https://app.dimensions.ai/details/publication/pub.1074867918 schema:CreativeWork
    240 https://app.dimensions.ai/details/publication/pub.1082535482 schema:CreativeWork
    241 https://app.dimensions.ai/details/publication/pub.1082948111 schema:CreativeWork
    242 https://doi.org/10.1073/pnas.94.17.9226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041210769
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1093/aob/mcf134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007428666
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1093/aob/mcr323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010480589
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1093/bioinformatics/bth230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047038250
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1093/bioinformatics/btm143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029867719
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1093/jhered/93.1.77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035613632
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1111/j.1469-1809.1943.tb02321.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020384561
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1534/genetics.104.032375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031153348
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1534/genetics.107.074518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014780985
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1534/genetics.107.077537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019791097
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1534/genetics.108.089680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037921872
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1534/genetics.109.101642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012256994
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.2135/cropsci2004.0560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069028564
    267 rdf:type schema:CreativeWork
    268 https://www.grid.ac/institutes/grid.412517.4 schema:alternateName Pondicherry University
    269 schema:name Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India
    270 Department of Biotechnology, Pondicherry University, 605014, Puducherry, India
    271 rdf:type schema:Organization
    272 https://www.grid.ac/institutes/grid.8195.5 schema:alternateName University of Delhi
    273 schema:name Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India
    274 Department of Genetics, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India
    275 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...