QTL mapping of yield-associated traits in Brassica juncea: meta-analysis and epistatic interactions using two different crosses between east European and ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-11

AUTHORS

Satish Kumar Yadava, N. Arumugam, Arundhati Mukhopadhyay, Yashpal Singh Sodhi, Vibha Gupta, Deepak Pental, Akshay K. Pradhan

ABSTRACT

Genetic analysis of 12 yield-associated traits was undertaken by dissection of quantitative trait loci (QTL) through meta-analysis and epistatic interaction studies in Brassica juncea. A consensus (integrated) map in B. juncea was constructed using two maps. These were VH map, developed earlier in the laboratory by using a DH population from the cross between Varuna and Heera (Pradhan et al. in Theor Appl Genet 106:607-614, 2003; Ramchiary et al. in Theor Appl Genet. 115:807-817, 2007; Panjabi et al. in BMC Genomics 9:113, 2008), and the TD map, developed in the present study using a DH population of 100 lines from the cross between TM-4 and Donskaja-IV. The TD map was constructed with 911 markers consisting of 585 AFLP, 8 SSR and 318 IP markers covering a total genome length of 1,629.9 cM. The consensus map constructed by using the common markers between the two maps contained a total of 2,662 markers and covered a total genome length of 1,927.1 cM. Firstly, QTL analysis of 12 yield-associated traits was undertaken for the TD population based on three-environment phenotypic data. Secondly, the three-environment phenotypic data for the same 12 quantitative traits generated by Ramchiary et al. (2007) were re-analyzed for the QTL detection in the VH map. Comparative analysis identified both common and population-specific QTL. The study revealed the presence of QTL clusters on LG A7, A8 and A10 in both TD and VH maps. Meta-analyses resolved 187 QTL distributed over nine linkage groups of TD and VH maps into 20 meta-QTL. Maximum resolution was recorded for the LG A10 wherein all the 54 QTL were mapped to a single meta-QTL within a confidence interval of 3.0 cM. Digenic epistatic interactions of QTL in both TD and VH maps revealed substantial additive × additive interactions showing a higher frequency of Type 1 and Type 2 interactions than Type 3 interactions. Some of the loci interacted with more than one locus indicating the presence of higher order epistatic interactions. These findings provided some detailed insight into the genetic architecture of the yield-associated traits in B. juncea. More... »

PAGES

1553-1564

References to SciGraph publications

  • 1993-01. Heterosis breeding in Indian mustard (Brassica juncea L. Czern & Coss): Analysis of component characters contributing to heterosis for yield in EUPHYTICA
  • 1994. Extraction of total cellular DNA from plants, algae and fungi in PLANT MOLECULAR BIOLOGY MANUAL
  • 2011-12. Meta-analysis of grain yield QTL identified during agricultural drought in grasses showed consensus in BMC GENOMICS
  • 2006-12. A new cytoplasmic male sterility system for hybrid seed production in Indian oilseed mustard Brassica juncea in THEORETICAL AND APPLIED GENETICS
  • 2001-02. AFLP-based genetic diversity assessment amongst agronomically important natural and some newly synthesized lines of Brassica juncea in THEORETICAL AND APPLIED GENETICS
  • 2010-01. Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.) in THEORETICAL AND APPLIED GENETICS
  • 2008-12. Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes in BMC GENOMICS
  • 2003-02. A high-density linkage map in Brassica juncea (Indian mustard) using AFLP and RFLP markers in THEORETICAL AND APPLIED GENETICS
  • 1994-04. Potential use of random amplified polymorphic DNA (RAPD) technique to study the genetic diversity in Indian mustard (Brassica juncea) and its relationship to heterosis in THEORETICAL AND APPLIED GENETICS
  • 2006-08. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2. Identification of alleles from unadapted germplasm in THEORETICAL AND APPLIED GENETICS
  • 2001-05. The flexible genome in NATURE REVIEWS GENETICS
  • 2008-01. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations in THEORETICAL AND APPLIED GENETICS
  • 2008-12. Comparative QTL mapping of resistance to sugarcane mosaic virus in maize based on bioinformatics in FRONTIERS OF AGRICULTURE IN CHINA
  • 2007-10. Mapping of yield influencing QTL in Brassica juncea: implications for breeding of a major oilseed crop of dryland areas in THEORETICAL AND APPLIED GENETICS
  • 2006-08. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. Identification of genomic regions from winter germplasm in THEORETICAL AND APPLIED GENETICS
  • 2007-02. Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis in THEORETICAL AND APPLIED GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00122-012-1934-3

    DOI

    http://dx.doi.org/10.1007/s00122-012-1934-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1022239797

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/22821338


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosome Mapping", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosomes, Plant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Crosses, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Epistasis, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Europe", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Pool", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetics, Population", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "India", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mustard Plant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phenotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Quantitative Trait Loci", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Quantitative Trait, Heritable", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Delhi", 
              "id": "https://www.grid.ac/institutes/grid.8195.5", 
              "name": [
                "Department of Genetics, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yadava", 
            "givenName": "Satish Kumar", 
            "id": "sg:person.01017473354.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017473354.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Pondicherry University", 
              "id": "https://www.grid.ac/institutes/grid.412517.4", 
              "name": [
                "Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India", 
                "Department of Biotechnology, Pondicherry University, 605014, Puducherry, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Arumugam", 
            "givenName": "N.", 
            "id": "sg:person.01133244757.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133244757.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Delhi", 
              "id": "https://www.grid.ac/institutes/grid.8195.5", 
              "name": [
                "Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mukhopadhyay", 
            "givenName": "Arundhati", 
            "id": "sg:person.0674770440.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674770440.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Delhi", 
              "id": "https://www.grid.ac/institutes/grid.8195.5", 
              "name": [
                "Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sodhi", 
            "givenName": "Yashpal Singh", 
            "id": "sg:person.0754200671.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754200671.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Delhi", 
              "id": "https://www.grid.ac/institutes/grid.8195.5", 
              "name": [
                "Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gupta", 
            "givenName": "Vibha", 
            "id": "sg:person.0707106054.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707106054.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Delhi", 
              "id": "https://www.grid.ac/institutes/grid.8195.5", 
              "name": [
                "Department of Genetics, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India", 
                "Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pental", 
            "givenName": "Deepak", 
            "id": "sg:person.01230565713.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230565713.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Delhi", 
              "id": "https://www.grid.ac/institutes/grid.8195.5", 
              "name": [
                "Department of Genetics, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India", 
                "Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pradhan", 
            "givenName": "Akshay K.", 
            "id": "sg:person.01137563054.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137563054.00"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00122-007-0610-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000587413", 
              "https://doi.org/10.1007/s00122-007-0610-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-007-0610-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000587413", 
              "https://doi.org/10.1007/s00122-007-0610-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-006-0413-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003326201", 
              "https://doi.org/10.1007/s00122-006-0413-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-006-0413-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003326201", 
              "https://doi.org/10.1007/s00122-006-0413-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11703-008-0081-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006863018", 
              "https://doi.org/10.1007/s11703-008-0081-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/aob/mcf134", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007428666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/aob/mcr323", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010480589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-9-113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011621370", 
              "https://doi.org/10.1186/1471-2164-9-113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.109.101642", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012256994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.109.101642", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012256994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-002-1083-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012983945", 
              "https://doi.org/10.1007/s00122-002-1083-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-006-0323-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013764536", 
              "https://doi.org/10.1007/s00122-006-0323-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-006-0323-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013764536", 
              "https://doi.org/10.1007/s00122-006-0323-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.107.074518", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014780985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.107.074518", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014780985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-12-319", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016085778", 
              "https://doi.org/10.1186/1471-2164-12-319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00022368", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016943654", 
              "https://doi.org/10.1007/bf00022368"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00022368", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016943654", 
              "https://doi.org/10.1007/bf00022368"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.107.077537", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019791097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.107.077537", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019791097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1469-1809.1943.tb02321.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020384561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-011-0511-8_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020790088", 
              "https://doi.org/10.1007/978-94-011-0511-8_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001220051635", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026795799", 
              "https://doi.org/10.1007/s001220051635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001220051635", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026795799", 
              "https://doi.org/10.1007/s001220051635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btm143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029867719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.104.032375", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031153348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.104.032375", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031153348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-006-0459-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033259454", 
              "https://doi.org/10.1007/s00122-006-0459-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-006-0459-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033259454", 
              "https://doi.org/10.1007/s00122-006-0459-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jhered/93.1.77", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035613632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35072018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037147561", 
              "https://doi.org/10.1038/35072018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35072018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037147561", 
              "https://doi.org/10.1038/35072018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-009-1133-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037193879", 
              "https://doi.org/10.1007/s00122-009-1133-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-009-1133-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037193879", 
              "https://doi.org/10.1007/s00122-009-1133-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-009-1133-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037193879", 
              "https://doi.org/10.1007/s00122-009-1133-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-007-0663-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037875984", 
              "https://doi.org/10.1007/s00122-007-0663-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-007-0663-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037875984", 
              "https://doi.org/10.1007/s00122-007-0663-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.108.089680", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037921872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.108.089680", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037921872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.94.17.9226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041210769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bth230", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047038250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-006-0324-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049002173", 
              "https://doi.org/10.1007/s00122-006-0324-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-006-0324-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049002173", 
              "https://doi.org/10.1007/s00122-006-0324-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00222403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051396987", 
              "https://doi.org/10.1007/bf00222403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci2004.0560", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069028564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074867917", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074867918", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082535482", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082948111", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-11", 
        "datePublishedReg": "2012-11-01", 
        "description": "Genetic analysis of 12 yield-associated traits was undertaken by dissection of quantitative trait loci (QTL) through meta-analysis and epistatic interaction studies in Brassica juncea. A consensus (integrated) map in B. juncea was constructed using two maps. These were VH map, developed earlier in the laboratory by using a DH population from the cross between Varuna and Heera (Pradhan et al. in Theor Appl Genet 106:607-614, 2003; Ramchiary et al. in Theor Appl Genet. 115:807-817, 2007; Panjabi et al. in BMC Genomics 9:113, 2008), and the TD map, developed in the present study using a DH population of 100 lines from the cross between TM-4 and Donskaja-IV. The TD map was constructed with 911 markers consisting of 585 AFLP, 8 SSR and 318 IP markers covering a total genome length of 1,629.9 cM. The consensus map constructed by using the common markers between the two maps contained a total of 2,662 markers and covered a total genome length of 1,927.1 cM. Firstly, QTL analysis of 12 yield-associated traits was undertaken for the TD population based on three-environment phenotypic data. Secondly, the three-environment phenotypic data for the same 12 quantitative traits generated by Ramchiary et al. (2007) were re-analyzed for the QTL detection in the VH map. Comparative analysis identified both common and population-specific QTL. The study revealed the presence of QTL clusters on LG A7, A8 and A10 in both TD and VH maps. Meta-analyses resolved 187 QTL distributed over nine linkage groups of TD and VH maps into 20 meta-QTL. Maximum resolution was recorded for the LG A10 wherein all the 54 QTL were mapped to a single meta-QTL within a confidence interval of 3.0 cM. Digenic epistatic interactions of QTL in both TD and VH maps revealed substantial additive \u00d7 additive interactions showing a higher frequency of Type 1 and Type 2 interactions than Type 3 interactions. Some of the loci interacted with more than one locus indicating the presence of higher order epistatic interactions. These findings provided some detailed insight into the genetic architecture of the yield-associated traits in B. juncea.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00122-012-1934-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1135804", 
            "issn": [
              "0040-5752", 
              "1432-2242"
            ], 
            "name": "Theoretical and Applied Genetics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "125"
          }
        ], 
        "name": "QTL mapping of yield-associated traits in Brassica juncea: meta-analysis and epistatic interactions using two different crosses between east European and Indian gene pool lines", 
        "pagination": "1553-1564", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "69f46b0d950515d35148f17a99ffb9ee06246413870c2280d449c7c01d7eeaf1"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "22821338"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0145600"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00122-012-1934-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1022239797"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00122-012-1934-3", 
          "https://app.dimensions.ai/details/publication/pub.1022239797"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000505.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00122-012-1934-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00122-012-1934-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00122-012-1934-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00122-012-1934-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00122-012-1934-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    275 TRIPLES      21 PREDICATES      74 URIs      33 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00122-012-1934-3 schema:about N2a6274a33bb14c29bfeb3d2f39f6c220
    2 N380a29471c4f459f9df0d37546117925
    3 N3fabc2c87ddb4d5693e413a7bf997f03
    4 N4d8d02b6919a4ca0b16f88047ebe8863
    5 N5ecc8098dbd34cb0a62a941b3d5b269f
    6 N77364bf15ee84fc995fe6b88f995c21b
    7 N7d21216d58074ce2b5b44d4406ad1efb
    8 N86b00e18555347c4a429a1703e40708f
    9 N98c7777ee34a438fae306b1e285b769e
    10 Na049f138fd9347fb9ac3fc50f441f836
    11 Nb44c4c8e9c8b45d9ae396507b912e89a
    12 Ne45fd0963e6942b7ab96162813aa8760
    13 anzsrc-for:06
    14 anzsrc-for:0604
    15 schema:author Nbe5f9f945ff84ffe8c6e72f8730c1fda
    16 schema:citation sg:pub.10.1007/978-94-011-0511-8_12
    17 sg:pub.10.1007/bf00022368
    18 sg:pub.10.1007/bf00222403
    19 sg:pub.10.1007/s00122-002-1083-1
    20 sg:pub.10.1007/s00122-006-0323-1
    21 sg:pub.10.1007/s00122-006-0324-0
    22 sg:pub.10.1007/s00122-006-0413-0
    23 sg:pub.10.1007/s00122-006-0459-z
    24 sg:pub.10.1007/s00122-007-0610-5
    25 sg:pub.10.1007/s00122-007-0663-5
    26 sg:pub.10.1007/s00122-009-1133-z
    27 sg:pub.10.1007/s001220051635
    28 sg:pub.10.1007/s11703-008-0081-8
    29 sg:pub.10.1038/35072018
    30 sg:pub.10.1186/1471-2164-12-319
    31 sg:pub.10.1186/1471-2164-9-113
    32 https://app.dimensions.ai/details/publication/pub.1074867917
    33 https://app.dimensions.ai/details/publication/pub.1074867918
    34 https://app.dimensions.ai/details/publication/pub.1082535482
    35 https://app.dimensions.ai/details/publication/pub.1082948111
    36 https://doi.org/10.1073/pnas.94.17.9226
    37 https://doi.org/10.1093/aob/mcf134
    38 https://doi.org/10.1093/aob/mcr323
    39 https://doi.org/10.1093/bioinformatics/bth230
    40 https://doi.org/10.1093/bioinformatics/btm143
    41 https://doi.org/10.1093/jhered/93.1.77
    42 https://doi.org/10.1111/j.1469-1809.1943.tb02321.x
    43 https://doi.org/10.1534/genetics.104.032375
    44 https://doi.org/10.1534/genetics.107.074518
    45 https://doi.org/10.1534/genetics.107.077537
    46 https://doi.org/10.1534/genetics.108.089680
    47 https://doi.org/10.1534/genetics.109.101642
    48 https://doi.org/10.2135/cropsci2004.0560
    49 schema:datePublished 2012-11
    50 schema:datePublishedReg 2012-11-01
    51 schema:description Genetic analysis of 12 yield-associated traits was undertaken by dissection of quantitative trait loci (QTL) through meta-analysis and epistatic interaction studies in Brassica juncea. A consensus (integrated) map in B. juncea was constructed using two maps. These were VH map, developed earlier in the laboratory by using a DH population from the cross between Varuna and Heera (Pradhan et al. in Theor Appl Genet 106:607-614, 2003; Ramchiary et al. in Theor Appl Genet. 115:807-817, 2007; Panjabi et al. in BMC Genomics 9:113, 2008), and the TD map, developed in the present study using a DH population of 100 lines from the cross between TM-4 and Donskaja-IV. The TD map was constructed with 911 markers consisting of 585 AFLP, 8 SSR and 318 IP markers covering a total genome length of 1,629.9 cM. The consensus map constructed by using the common markers between the two maps contained a total of 2,662 markers and covered a total genome length of 1,927.1 cM. Firstly, QTL analysis of 12 yield-associated traits was undertaken for the TD population based on three-environment phenotypic data. Secondly, the three-environment phenotypic data for the same 12 quantitative traits generated by Ramchiary et al. (2007) were re-analyzed for the QTL detection in the VH map. Comparative analysis identified both common and population-specific QTL. The study revealed the presence of QTL clusters on LG A7, A8 and A10 in both TD and VH maps. Meta-analyses resolved 187 QTL distributed over nine linkage groups of TD and VH maps into 20 meta-QTL. Maximum resolution was recorded for the LG A10 wherein all the 54 QTL were mapped to a single meta-QTL within a confidence interval of 3.0 cM. Digenic epistatic interactions of QTL in both TD and VH maps revealed substantial additive × additive interactions showing a higher frequency of Type 1 and Type 2 interactions than Type 3 interactions. Some of the loci interacted with more than one locus indicating the presence of higher order epistatic interactions. These findings provided some detailed insight into the genetic architecture of the yield-associated traits in B. juncea.
    52 schema:genre research_article
    53 schema:inLanguage en
    54 schema:isAccessibleForFree false
    55 schema:isPartOf Nbd0c94cbb79d434e979bf0a4f3730834
    56 Nd92bbc08ed4b4d64a29f2aa941d0b480
    57 sg:journal.1135804
    58 schema:name QTL mapping of yield-associated traits in Brassica juncea: meta-analysis and epistatic interactions using two different crosses between east European and Indian gene pool lines
    59 schema:pagination 1553-1564
    60 schema:productId N181672590ddf4e01890da3237d8d4dd9
    61 N6bc175dc9f644c9d8039b54a0a4b3c4d
    62 Na28c77cce74b4a6b892707a708cf4d61
    63 Na92be3066c3c416a9159f62e49728491
    64 Nde94d89bd5c74f828bbc32a9104af870
    65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022239797
    66 https://doi.org/10.1007/s00122-012-1934-3
    67 schema:sdDatePublished 2019-04-10T14:07
    68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    69 schema:sdPublisher N0a7199c78603433b96c01309c7f528d8
    70 schema:url http://link.springer.com/10.1007%2Fs00122-012-1934-3
    71 sgo:license sg:explorer/license/
    72 sgo:sdDataset articles
    73 rdf:type schema:ScholarlyArticle
    74 N02222925ee484ecdadaefcef01f6385f rdf:first sg:person.01133244757.39
    75 rdf:rest N14b01b00d4fc4ea990496db1908ff015
    76 N0a7199c78603433b96c01309c7f528d8 schema:name Springer Nature - SN SciGraph project
    77 rdf:type schema:Organization
    78 N14b01b00d4fc4ea990496db1908ff015 rdf:first sg:person.0674770440.54
    79 rdf:rest Nfd885c00f9db446abe5d13fcc1d914d7
    80 N181672590ddf4e01890da3237d8d4dd9 schema:name nlm_unique_id
    81 schema:value 0145600
    82 rdf:type schema:PropertyValue
    83 N2a6274a33bb14c29bfeb3d2f39f6c220 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    84 schema:name Chromosome Mapping
    85 rdf:type schema:DefinedTerm
    86 N380a29471c4f459f9df0d37546117925 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    87 schema:name Epistasis, Genetic
    88 rdf:type schema:DefinedTerm
    89 N3fabc2c87ddb4d5693e413a7bf997f03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    90 schema:name Chromosomes, Plant
    91 rdf:type schema:DefinedTerm
    92 N4d8d02b6919a4ca0b16f88047ebe8863 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    93 schema:name Quantitative Trait Loci
    94 rdf:type schema:DefinedTerm
    95 N5ecc8098dbd34cb0a62a941b3d5b269f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name India
    97 rdf:type schema:DefinedTerm
    98 N6bc175dc9f644c9d8039b54a0a4b3c4d schema:name dimensions_id
    99 schema:value pub.1022239797
    100 rdf:type schema:PropertyValue
    101 N77364bf15ee84fc995fe6b88f995c21b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Europe
    103 rdf:type schema:DefinedTerm
    104 N7d21216d58074ce2b5b44d4406ad1efb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    105 schema:name Phenotype
    106 rdf:type schema:DefinedTerm
    107 N86b00e18555347c4a429a1703e40708f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    108 schema:name Gene Pool
    109 rdf:type schema:DefinedTerm
    110 N9426169f450841578f8a4cd0bd93501d rdf:first sg:person.0707106054.43
    111 rdf:rest Nc71d0f1b096c4152ba0b7c56ef2668ec
    112 N98c7777ee34a438fae306b1e285b769e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Mustard Plant
    114 rdf:type schema:DefinedTerm
    115 Na049f138fd9347fb9ac3fc50f441f836 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Quantitative Trait, Heritable
    117 rdf:type schema:DefinedTerm
    118 Na28c77cce74b4a6b892707a708cf4d61 schema:name pubmed_id
    119 schema:value 22821338
    120 rdf:type schema:PropertyValue
    121 Na92be3066c3c416a9159f62e49728491 schema:name doi
    122 schema:value 10.1007/s00122-012-1934-3
    123 rdf:type schema:PropertyValue
    124 Nb44c4c8e9c8b45d9ae396507b912e89a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Crosses, Genetic
    126 rdf:type schema:DefinedTerm
    127 Nbd0c94cbb79d434e979bf0a4f3730834 schema:volumeNumber 125
    128 rdf:type schema:PublicationVolume
    129 Nbe5f9f945ff84ffe8c6e72f8730c1fda rdf:first sg:person.01017473354.36
    130 rdf:rest N02222925ee484ecdadaefcef01f6385f
    131 Nc71d0f1b096c4152ba0b7c56ef2668ec rdf:first sg:person.01230565713.24
    132 rdf:rest Nef0a569665d44bd4826e8b3534e8a5a3
    133 Nd92bbc08ed4b4d64a29f2aa941d0b480 schema:issueNumber 7
    134 rdf:type schema:PublicationIssue
    135 Nde94d89bd5c74f828bbc32a9104af870 schema:name readcube_id
    136 schema:value 69f46b0d950515d35148f17a99ffb9ee06246413870c2280d449c7c01d7eeaf1
    137 rdf:type schema:PropertyValue
    138 Ne45fd0963e6942b7ab96162813aa8760 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Genetics, Population
    140 rdf:type schema:DefinedTerm
    141 Nef0a569665d44bd4826e8b3534e8a5a3 rdf:first sg:person.01137563054.00
    142 rdf:rest rdf:nil
    143 Nfd885c00f9db446abe5d13fcc1d914d7 rdf:first sg:person.0754200671.50
    144 rdf:rest N9426169f450841578f8a4cd0bd93501d
    145 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    146 schema:name Biological Sciences
    147 rdf:type schema:DefinedTerm
    148 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    149 schema:name Genetics
    150 rdf:type schema:DefinedTerm
    151 sg:journal.1135804 schema:issn 0040-5752
    152 1432-2242
    153 schema:name Theoretical and Applied Genetics
    154 rdf:type schema:Periodical
    155 sg:person.01017473354.36 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
    156 schema:familyName Yadava
    157 schema:givenName Satish Kumar
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017473354.36
    159 rdf:type schema:Person
    160 sg:person.01133244757.39 schema:affiliation https://www.grid.ac/institutes/grid.412517.4
    161 schema:familyName Arumugam
    162 schema:givenName N.
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133244757.39
    164 rdf:type schema:Person
    165 sg:person.01137563054.00 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
    166 schema:familyName Pradhan
    167 schema:givenName Akshay K.
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137563054.00
    169 rdf:type schema:Person
    170 sg:person.01230565713.24 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
    171 schema:familyName Pental
    172 schema:givenName Deepak
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230565713.24
    174 rdf:type schema:Person
    175 sg:person.0674770440.54 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
    176 schema:familyName Mukhopadhyay
    177 schema:givenName Arundhati
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674770440.54
    179 rdf:type schema:Person
    180 sg:person.0707106054.43 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
    181 schema:familyName Gupta
    182 schema:givenName Vibha
    183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707106054.43
    184 rdf:type schema:Person
    185 sg:person.0754200671.50 schema:affiliation https://www.grid.ac/institutes/grid.8195.5
    186 schema:familyName Sodhi
    187 schema:givenName Yashpal Singh
    188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754200671.50
    189 rdf:type schema:Person
    190 sg:pub.10.1007/978-94-011-0511-8_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020790088
    191 https://doi.org/10.1007/978-94-011-0511-8_12
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/bf00022368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016943654
    194 https://doi.org/10.1007/bf00022368
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/bf00222403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051396987
    197 https://doi.org/10.1007/bf00222403
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s00122-002-1083-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012983945
    200 https://doi.org/10.1007/s00122-002-1083-1
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s00122-006-0323-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013764536
    203 https://doi.org/10.1007/s00122-006-0323-1
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s00122-006-0324-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049002173
    206 https://doi.org/10.1007/s00122-006-0324-0
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/s00122-006-0413-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003326201
    209 https://doi.org/10.1007/s00122-006-0413-0
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/s00122-006-0459-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1033259454
    212 https://doi.org/10.1007/s00122-006-0459-z
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/s00122-007-0610-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000587413
    215 https://doi.org/10.1007/s00122-007-0610-5
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/s00122-007-0663-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037875984
    218 https://doi.org/10.1007/s00122-007-0663-5
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/s00122-009-1133-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1037193879
    221 https://doi.org/10.1007/s00122-009-1133-z
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/s001220051635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026795799
    224 https://doi.org/10.1007/s001220051635
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/s11703-008-0081-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006863018
    227 https://doi.org/10.1007/s11703-008-0081-8
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/35072018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037147561
    230 https://doi.org/10.1038/35072018
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1186/1471-2164-12-319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016085778
    233 https://doi.org/10.1186/1471-2164-12-319
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1186/1471-2164-9-113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011621370
    236 https://doi.org/10.1186/1471-2164-9-113
    237 rdf:type schema:CreativeWork
    238 https://app.dimensions.ai/details/publication/pub.1074867917 schema:CreativeWork
    239 https://app.dimensions.ai/details/publication/pub.1074867918 schema:CreativeWork
    240 https://app.dimensions.ai/details/publication/pub.1082535482 schema:CreativeWork
    241 https://app.dimensions.ai/details/publication/pub.1082948111 schema:CreativeWork
    242 https://doi.org/10.1073/pnas.94.17.9226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041210769
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1093/aob/mcf134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007428666
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1093/aob/mcr323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010480589
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1093/bioinformatics/bth230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047038250
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1093/bioinformatics/btm143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029867719
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1093/jhered/93.1.77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035613632
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1111/j.1469-1809.1943.tb02321.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020384561
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1534/genetics.104.032375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031153348
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1534/genetics.107.074518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014780985
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1534/genetics.107.077537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019791097
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1534/genetics.108.089680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037921872
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1534/genetics.109.101642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012256994
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.2135/cropsci2004.0560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069028564
    267 rdf:type schema:CreativeWork
    268 https://www.grid.ac/institutes/grid.412517.4 schema:alternateName Pondicherry University
    269 schema:name Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India
    270 Department of Biotechnology, Pondicherry University, 605014, Puducherry, India
    271 rdf:type schema:Organization
    272 https://www.grid.ac/institutes/grid.8195.5 schema:alternateName University of Delhi
    273 schema:name Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India
    274 Department of Genetics, University of Delhi South Campus, Benito Juarez Road, 110021, New Delhi, India
    275 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...