Genetic components and major QTL confer resistance to bean pyralid (Lamprosema indicata Fabricius) under multiple environments in four RIL populations ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-09

AUTHORS

Guangnan Xing, Bin Zhou, Yufeng Wang, Tuanjie Zhao, Deyue Yu, Shouyi Chen, Junyi Gai

ABSTRACT

Bean pyralid (BP; Lamprosema indicata Fabricius) is one of the major leaf-feeding insects that affect soybean crops in central and southern China. Four recombinant inbred line populations (KY, WT, XG and SX) were tested during 2004-2006 in Nanjing, China, to identify quantitative trait loci (QTL) for resistance to BP on the basis of data for rolled leaflet percentage under field infestation conditions. The mapping was performed using QTL Network V2.0 and checked with Windows QTL Cartographer V2.5 and IciMapping V2.2. The results showed that 81-92 % of the phenotypic variation was accounted for by additive QTL (27-43 %), epistatic QTL pairs (5-13 %), and collective unmapped minor QTL (38-58 %). In total, 17 QTL were detected on 11 linkage groups, of which two had additive effects, six had both additive and epistatic effects, and nine had only epistatic effects. Eight epistatic QTL pairs were observed, of which three pairs involved two QTL with additive effects, one involved one QTL with additive effect, and four involved no QTL with additive effects. Different genetic structures for BP resistance were found among the populations. Eight QTL (five additive and three epistatic pairs) were detected in KY, ten QTL (four additive and five epistatic pairs) were detected in WT, and only one additive QTL was detected in both the XG and the SX populations. BP12-1 and BP1-1 are major QTL, with the former accounting for 15, 31, and 50 % of the total genetic variation (including epistasis) in KY, WT, and XG, respectively, and the latter accounting for 13 and 32 % of the total genetic variation in KY and SX, respectively. The additive × year and epistasis × year interaction effects were negligible, indicating that the QTL were stable over the years. Because 41-68 % of the total genetic variation could not be accounted for by these QTL, the use of both identified QTL and unmapped minor QTL in breeding for BP resistance should be considered. More... »

PAGES

859-875

References to SciGraph publications

  • 2004-06. A new integrated genetic linkage map of the soybean in THEORETICAL AND APPLIED GENETICS
  • 2008-10. Genetic linkage mapping of the soybean aphid resistance gene in PI 243540 in THEORETICAL AND APPLIED GENETICS
  • 1998-05. Identification of molecular markers linked to quantitative trait loci for soybean resistance to corn earworm in THEORETICAL AND APPLIED GENETICS
  • 2004-04. QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers in THEORETICAL AND APPLIED GENETICS
  • 2004-08. Epistasis: too often neglected in complex trait studies? in NATURE REVIEWS GENETICS
  • 2010-07. Identification of QTL in soybean underlying resistance to herbivory by Japanese beetles (Popillia japonica, Newman) in THEORETICAL AND APPLIED GENETICS
  • 2007-01. Soybean aphid resistance genes in the soybean cultivars Dowling and Jackson map to linkage group M in MOLECULAR BREEDING
  • 2009-02. Molecular mapping of soybean aphid resistance genes in PI 567541B in THEORETICAL AND APPLIED GENETICS
  • 2009. Keys to the Increased Use of Host Plant Resistance in Integrated Pest Management in INTEGRATED PEST MANAGEMENT: INNOVATION-DEVELOPMENT PROCESS
  • 2003-06. Identifications of two different mechanisms for sorghum midge resistance through QTL mapping in THEORETICAL AND APPLIED GENETICS
  • 2008-11. Identification of QTL underlying the resistance of soybean to pod borer, Leguminivora glycinivorella (Mats.) obraztsov, and correlations with plant, pod and seed traits in EUPHYTICA
  • 2005-02. Discovery and utilization of QTLs for insect resistance in soybean in GENETICA
  • 2010-12. Epistatic QTL pairs associated with meat quality and carcass composition traits in a porcine Duroc × Pietrain population in GENETICS SELECTION EVOLUTION
  • 2010-03. Fine mapping the soybean aphid resistance gene Rag1 in soybean in THEORETICAL AND APPLIED GENETICS
  • 1994-04. Bayesian analysis of mixed linear models via Gibbs sampling with an application to litter size in Iberian pigs in GENETICS SELECTION EVOLUTION
  • 2008. Soybean: Market Driven Research Needs in GENETICS AND GENOMICS OF SOYBEAN
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00122-012-1878-7

    DOI

    http://dx.doi.org/10.1007/s00122-012-1878-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1032958727

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/22580968


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosome Mapping", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosomes, Plant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Plant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Environment", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fabaceae", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genes, Plant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Linkage", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Markers", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Immunity, Innate", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Linkage Disequilibrium", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phenotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymerase Chain Reaction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymorphism, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Quantitative Trait Loci", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Soybeans", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Nanjing Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.27871.3b", 
              "name": [
                "Soybean Research Institute/National Center for Soybean Improvement/MOA Key Laboratory of Biology and Genetic Improvement of Soybean/National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xing", 
            "givenName": "Guangnan", 
            "id": "sg:person.01362213523.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362213523.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanjing Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.27871.3b", 
              "name": [
                "Soybean Research Institute/National Center for Soybean Improvement/MOA Key Laboratory of Biology and Genetic Improvement of Soybean/National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Bin", 
            "id": "sg:person.0636607423.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636607423.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanjing Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.27871.3b", 
              "name": [
                "Soybean Research Institute/National Center for Soybean Improvement/MOA Key Laboratory of Biology and Genetic Improvement of Soybean/National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Yufeng", 
            "id": "sg:person.0633733744.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633733744.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanjing Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.27871.3b", 
              "name": [
                "Soybean Research Institute/National Center for Soybean Improvement/MOA Key Laboratory of Biology and Genetic Improvement of Soybean/National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Tuanjie", 
            "id": "sg:person.01015633266.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015633266.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanjing Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.27871.3b", 
              "name": [
                "Soybean Research Institute/National Center for Soybean Improvement/MOA Key Laboratory of Biology and Genetic Improvement of Soybean/National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yu", 
            "givenName": "Deyue", 
            "id": "sg:person.0713571320.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713571320.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Genetics and Developmental Biology", 
              "id": "https://www.grid.ac/institutes/grid.418558.5", 
              "name": [
                "Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Shouyi", 
            "id": "sg:person.0720531750.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720531750.64"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanjing Agricultural University", 
              "id": "https://www.grid.ac/institutes/grid.27871.3b", 
              "name": [
                "Soybean Research Institute/National Center for Soybean Improvement/MOA Key Laboratory of Biology and Genetic Improvement of Soybean/National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gai", 
            "givenName": "Junyi", 
            "id": "sg:person.01174466073.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174466073.42"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nrg1407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000852461", 
              "https://doi.org/10.1038/nrg1407"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000852461", 
              "https://doi.org/10.1038/nrg1407"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-72299-3_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002254224", 
              "https://doi.org/10.1007/978-0-387-72299-3_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-72299-3_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002254224", 
              "https://doi.org/10.1007/978-0-387-72299-3_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10709-004-2741-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004632970", 
              "https://doi.org/10.1007/s10709-004-2741-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.107.083899", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010013063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.107.083899", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010013063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/15427528.2011.546093", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010437915"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-004-1602-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010747569", 
              "https://doi.org/10.1007/s00122-004-1602-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-004-1602-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010747569", 
              "https://doi.org/10.1007/s00122-004-1602-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.ento.45.1.393", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011330073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btm494", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012125806"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0888-7543(87)90010-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015284325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1297-9686-42-39", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016944026", 
              "https://doi.org/10.1186/1297-9686-42-39"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-008-9728-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017646335", 
              "https://doi.org/10.1007/s10681-008-9728-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-006-9039-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017693239", 
              "https://doi.org/10.1007/s11032-006-9039-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.107.070821", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018544987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.107.070821", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018544987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1297-9686-26-2-91", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018846383", 
              "https://doi.org/10.1186/1297-9686-26-2-91"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-010-1314-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020323126", 
              "https://doi.org/10.1007/s00122-010-1314-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-003-1527-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021443389", 
              "https://doi.org/10.1007/s00122-003-1527-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-003-1527-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021443389", 
              "https://doi.org/10.1007/s00122-003-1527-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1439-0523.2011.01862.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028534443"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btm143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029867719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4020-8992-3_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032038132", 
              "https://doi.org/10.1007/978-1-4020-8992-3_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4020-8992-3_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032038132", 
              "https://doi.org/10.1007/978-1-4020-8992-3_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1270/jsbbs.54.27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034684941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jhered/93.1.77", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035613632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-008-0835-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039060798", 
              "https://doi.org/10.1007/s00122-008-0835-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-008-0835-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039060798", 
              "https://doi.org/10.1007/s00122-008-0835-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-003-1217-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039567147", 
              "https://doi.org/10.1007/s00122-003-1217-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5656/ksae.2008.47.4.353", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040607798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-008-0914-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042186916", 
              "https://doi.org/10.1007/s00122-008-0914-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-008-0914-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042186916", 
              "https://doi.org/10.1007/s00122-008-0914-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.106.066811", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047329331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.106.066811", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047329331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-009-1234-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049984607", 
              "https://doi.org/10.1007/s00122-009-1234-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-009-1234-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049984607", 
              "https://doi.org/10.1007/s00122-009-1234-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001220050803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050810363", 
              "https://doi.org/10.1007/s001220050803"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001220050803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050810363", 
              "https://doi.org/10.1007/s001220050803"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1360/yc-007-1139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065077957"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2134/agronj1956.00021962004800060008x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068984558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci1971.0011183x001100040035x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069015551"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci1989.0011183x002900030013x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069021978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci1999.0011183x003900020038x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069026357"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci1999.3951464x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069026546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci2000.401233x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069026728"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci2000.402375x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069026761"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci2001.1931", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069027001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci2004.0744", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069028680"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci2005.06-0109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069029516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci2006.12.0770", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069030193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci2008.09.0561", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069030769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3724/sp.j.1006.2008.00008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071318375"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3724/sp.j.1006.2008.00067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071318383"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3724/sp.j.1006.2008.00361", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071318429"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3724/sp.j.1006.2010.01100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071319133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2134/agronmonogr16.3ed.c17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1088354926"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-09", 
        "datePublishedReg": "2012-09-01", 
        "description": "Bean pyralid (BP; Lamprosema indicata Fabricius) is one of the major leaf-feeding insects that affect soybean crops in central and southern China. Four recombinant inbred line populations (KY, WT, XG and SX) were tested during 2004-2006 in Nanjing, China, to identify quantitative trait loci (QTL) for resistance to BP on the basis of data for rolled leaflet percentage under field infestation conditions. The mapping was performed using QTL Network V2.0 and checked with Windows QTL Cartographer V2.5 and IciMapping V2.2. The results showed that 81-92 % of the phenotypic variation was accounted for by additive QTL (27-43 %), epistatic QTL pairs (5-13 %), and collective unmapped minor QTL (38-58 %). In total, 17 QTL were detected on 11 linkage groups, of which two had additive effects, six had both additive and epistatic effects, and nine had only epistatic effects. Eight epistatic QTL pairs were observed, of which three pairs involved two QTL with additive effects, one involved one QTL with additive effect, and four involved no QTL with additive effects. Different genetic structures for BP resistance were found among the populations. Eight QTL (five additive and three epistatic pairs) were detected in KY, ten QTL (four additive and five epistatic pairs) were detected in WT, and only one additive QTL was detected in both the XG and the SX populations. BP12-1 and BP1-1 are major QTL, with the former accounting for 15, 31, and 50 % of the total genetic variation (including epistasis) in KY, WT, and XG, respectively, and the latter accounting for 13 and 32 % of the total genetic variation in KY and SX, respectively. The additive \u00d7 year and epistasis \u00d7 year interaction effects were negligible, indicating that the QTL were stable over the years. Because 41-68 % of the total genetic variation could not be accounted for by these QTL, the use of both identified QTL and unmapped minor QTL in breeding for BP resistance should be considered.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00122-012-1878-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4931378", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1135804", 
            "issn": [
              "0040-5752", 
              "1432-2242"
            ], 
            "name": "Theoretical and Applied Genetics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "125"
          }
        ], 
        "name": "Genetic components and major QTL confer resistance to bean pyralid (Lamprosema indicata Fabricius) under multiple environments in four RIL populations of soybean", 
        "pagination": "859-875", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9d02e22edf179d2f8a568a453d7f17c3a337e56e02615024039410240e7b7166"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "22580968"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0145600"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00122-012-1878-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1032958727"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00122-012-1878-7", 
          "https://app.dimensions.ai/details/publication/pub.1032958727"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000489.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s00122-012-1878-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00122-012-1878-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00122-012-1878-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00122-012-1878-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00122-012-1878-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    334 TRIPLES      21 PREDICATES      91 URIs      37 LITERALS      25 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00122-012-1878-7 schema:about N2cdbe7bd6fb7466f979ac57d5679814e
    2 N2fc735c8185e4572827f10248f9a1d51
    3 N346ac1e42ccf4be69fcf8b59e7e2f7e9
    4 N4da4f472e01a4936b448706f3f5dda95
    5 N587f8fd724ec4005b81de3db267b051a
    6 N76b65fa6380243758025b24d54048609
    7 N80661286b9a34a169558e4be9eb91e25
    8 N907ad35770b64511b675f48343aca363
    9 N976fda4e2b17478c91508d5f0b69391a
    10 Na8ab2d83f1da4673bafd3c018aa519b1
    11 Nbf5a6ec218e347479db7d3f338f045d4
    12 Ncaeb997a80494c65aabd277bf5e4fb19
    13 Ndd6a7e9ea07c41c99d339f9af2862fc0
    14 Ne0411c8d193d4928afcb9cc7ae364dc2
    15 Ne38e8a8747e34d4f8fc630662f244dd2
    16 Ne3d8949fced14add9a19311feeed7879
    17 anzsrc-for:06
    18 anzsrc-for:0604
    19 schema:author N453694a28d7b454e90c8442d79604886
    20 schema:citation sg:pub.10.1007/978-0-387-72299-3_1
    21 sg:pub.10.1007/978-1-4020-8992-3_7
    22 sg:pub.10.1007/s00122-003-1217-0
    23 sg:pub.10.1007/s00122-003-1527-2
    24 sg:pub.10.1007/s00122-004-1602-3
    25 sg:pub.10.1007/s00122-008-0835-y
    26 sg:pub.10.1007/s00122-008-0914-0
    27 sg:pub.10.1007/s00122-009-1234-8
    28 sg:pub.10.1007/s00122-010-1314-9
    29 sg:pub.10.1007/s001220050803
    30 sg:pub.10.1007/s10681-008-9728-z
    31 sg:pub.10.1007/s10709-004-2741-9
    32 sg:pub.10.1007/s11032-006-9039-9
    33 sg:pub.10.1038/nrg1407
    34 sg:pub.10.1186/1297-9686-26-2-91
    35 sg:pub.10.1186/1297-9686-42-39
    36 https://doi.org/10.1016/0888-7543(87)90010-3
    37 https://doi.org/10.1080/15427528.2011.546093
    38 https://doi.org/10.1093/bioinformatics/btm143
    39 https://doi.org/10.1093/bioinformatics/btm494
    40 https://doi.org/10.1093/jhered/93.1.77
    41 https://doi.org/10.1111/j.1439-0523.2011.01862.x
    42 https://doi.org/10.1146/annurev.ento.45.1.393
    43 https://doi.org/10.1270/jsbbs.54.27
    44 https://doi.org/10.1360/yc-007-1139
    45 https://doi.org/10.1534/genetics.106.066811
    46 https://doi.org/10.1534/genetics.107.070821
    47 https://doi.org/10.1534/genetics.107.083899
    48 https://doi.org/10.2134/agronj1956.00021962004800060008x
    49 https://doi.org/10.2134/agronmonogr16.3ed.c17
    50 https://doi.org/10.2135/cropsci1971.0011183x001100040035x
    51 https://doi.org/10.2135/cropsci1989.0011183x002900030013x
    52 https://doi.org/10.2135/cropsci1999.0011183x003900020038x
    53 https://doi.org/10.2135/cropsci1999.3951464x
    54 https://doi.org/10.2135/cropsci2000.401233x
    55 https://doi.org/10.2135/cropsci2000.402375x
    56 https://doi.org/10.2135/cropsci2001.1931
    57 https://doi.org/10.2135/cropsci2004.0744
    58 https://doi.org/10.2135/cropsci2005.06-0109
    59 https://doi.org/10.2135/cropsci2006.12.0770
    60 https://doi.org/10.2135/cropsci2008.09.0561
    61 https://doi.org/10.3724/sp.j.1006.2008.00008
    62 https://doi.org/10.3724/sp.j.1006.2008.00067
    63 https://doi.org/10.3724/sp.j.1006.2008.00361
    64 https://doi.org/10.3724/sp.j.1006.2010.01100
    65 https://doi.org/10.5656/ksae.2008.47.4.353
    66 schema:datePublished 2012-09
    67 schema:datePublishedReg 2012-09-01
    68 schema:description Bean pyralid (BP; Lamprosema indicata Fabricius) is one of the major leaf-feeding insects that affect soybean crops in central and southern China. Four recombinant inbred line populations (KY, WT, XG and SX) were tested during 2004-2006 in Nanjing, China, to identify quantitative trait loci (QTL) for resistance to BP on the basis of data for rolled leaflet percentage under field infestation conditions. The mapping was performed using QTL Network V2.0 and checked with Windows QTL Cartographer V2.5 and IciMapping V2.2. The results showed that 81-92 % of the phenotypic variation was accounted for by additive QTL (27-43 %), epistatic QTL pairs (5-13 %), and collective unmapped minor QTL (38-58 %). In total, 17 QTL were detected on 11 linkage groups, of which two had additive effects, six had both additive and epistatic effects, and nine had only epistatic effects. Eight epistatic QTL pairs were observed, of which three pairs involved two QTL with additive effects, one involved one QTL with additive effect, and four involved no QTL with additive effects. Different genetic structures for BP resistance were found among the populations. Eight QTL (five additive and three epistatic pairs) were detected in KY, ten QTL (four additive and five epistatic pairs) were detected in WT, and only one additive QTL was detected in both the XG and the SX populations. BP12-1 and BP1-1 are major QTL, with the former accounting for 15, 31, and 50 % of the total genetic variation (including epistasis) in KY, WT, and XG, respectively, and the latter accounting for 13 and 32 % of the total genetic variation in KY and SX, respectively. The additive × year and epistasis × year interaction effects were negligible, indicating that the QTL were stable over the years. Because 41-68 % of the total genetic variation could not be accounted for by these QTL, the use of both identified QTL and unmapped minor QTL in breeding for BP resistance should be considered.
    69 schema:genre research_article
    70 schema:inLanguage en
    71 schema:isAccessibleForFree false
    72 schema:isPartOf Neab2f1db922342aab142af8a40e43e0a
    73 Nfb5bcb3c4ba34b8f9a95727b9f632d77
    74 sg:journal.1135804
    75 schema:name Genetic components and major QTL confer resistance to bean pyralid (Lamprosema indicata Fabricius) under multiple environments in four RIL populations of soybean
    76 schema:pagination 859-875
    77 schema:productId N72b9b8d27e374ac1a09db0c1cbd408ac
    78 N766cb8924d794f7eb7f198e09f8faa08
    79 N7d65831de83949fd9cb801fc7cd658c3
    80 Nc1cf933174ae4c7fa6f322c2dd95d96e
    81 Ncfb0fa8dd6ee46848440938699aa3495
    82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032958727
    83 https://doi.org/10.1007/s00122-012-1878-7
    84 schema:sdDatePublished 2019-04-10T14:55
    85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    86 schema:sdPublisher N5512b2ce004c438aac8d6917a7a4741f
    87 schema:url http://link.springer.com/10.1007/s00122-012-1878-7
    88 sgo:license sg:explorer/license/
    89 sgo:sdDataset articles
    90 rdf:type schema:ScholarlyArticle
    91 N278c431ac7aa48f6b0d9e4e32aa423ed rdf:first sg:person.01174466073.42
    92 rdf:rest rdf:nil
    93 N2cdbe7bd6fb7466f979ac57d5679814e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    94 schema:name Quantitative Trait Loci
    95 rdf:type schema:DefinedTerm
    96 N2fc735c8185e4572827f10248f9a1d51 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    97 schema:name Chromosome Mapping
    98 rdf:type schema:DefinedTerm
    99 N346ac1e42ccf4be69fcf8b59e7e2f7e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    100 schema:name Immunity, Innate
    101 rdf:type schema:DefinedTerm
    102 N453694a28d7b454e90c8442d79604886 rdf:first sg:person.01362213523.44
    103 rdf:rest N8108c325c3d749788cea5e414358b472
    104 N46b731cc18674a858fa2b66e7f171100 rdf:first sg:person.0720531750.64
    105 rdf:rest N278c431ac7aa48f6b0d9e4e32aa423ed
    106 N4da4f472e01a4936b448706f3f5dda95 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Soybeans
    108 rdf:type schema:DefinedTerm
    109 N5512b2ce004c438aac8d6917a7a4741f schema:name Springer Nature - SN SciGraph project
    110 rdf:type schema:Organization
    111 N587f8fd724ec4005b81de3db267b051a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Polymerase Chain Reaction
    113 rdf:type schema:DefinedTerm
    114 N72b9b8d27e374ac1a09db0c1cbd408ac schema:name pubmed_id
    115 schema:value 22580968
    116 rdf:type schema:PropertyValue
    117 N766cb8924d794f7eb7f198e09f8faa08 schema:name nlm_unique_id
    118 schema:value 0145600
    119 rdf:type schema:PropertyValue
    120 N76b65fa6380243758025b24d54048609 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Chromosomes, Plant
    122 rdf:type schema:DefinedTerm
    123 N7d65831de83949fd9cb801fc7cd658c3 schema:name readcube_id
    124 schema:value 9d02e22edf179d2f8a568a453d7f17c3a337e56e02615024039410240e7b7166
    125 rdf:type schema:PropertyValue
    126 N80661286b9a34a169558e4be9eb91e25 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Genetic Linkage
    128 rdf:type schema:DefinedTerm
    129 N8108c325c3d749788cea5e414358b472 rdf:first sg:person.0636607423.35
    130 rdf:rest Na169b9afdde44cedbc5d09a5f2e28428
    131 N8a89be8c0c644d67b727093359d7853d rdf:first sg:person.01015633266.25
    132 rdf:rest Nada9acfd1ec546cc8aa9b70575438c34
    133 N907ad35770b64511b675f48343aca363 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Genetic Markers
    135 rdf:type schema:DefinedTerm
    136 N976fda4e2b17478c91508d5f0b69391a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Genotype
    138 rdf:type schema:DefinedTerm
    139 Na169b9afdde44cedbc5d09a5f2e28428 rdf:first sg:person.0633733744.06
    140 rdf:rest N8a89be8c0c644d67b727093359d7853d
    141 Na8ab2d83f1da4673bafd3c018aa519b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Genes, Plant
    143 rdf:type schema:DefinedTerm
    144 Nada9acfd1ec546cc8aa9b70575438c34 rdf:first sg:person.0713571320.17
    145 rdf:rest N46b731cc18674a858fa2b66e7f171100
    146 Nbf5a6ec218e347479db7d3f338f045d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Fabaceae
    148 rdf:type schema:DefinedTerm
    149 Nc1cf933174ae4c7fa6f322c2dd95d96e schema:name dimensions_id
    150 schema:value pub.1032958727
    151 rdf:type schema:PropertyValue
    152 Ncaeb997a80494c65aabd277bf5e4fb19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Linkage Disequilibrium
    154 rdf:type schema:DefinedTerm
    155 Ncfb0fa8dd6ee46848440938699aa3495 schema:name doi
    156 schema:value 10.1007/s00122-012-1878-7
    157 rdf:type schema:PropertyValue
    158 Ndd6a7e9ea07c41c99d339f9af2862fc0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Phenotype
    160 rdf:type schema:DefinedTerm
    161 Ne0411c8d193d4928afcb9cc7ae364dc2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name DNA, Plant
    163 rdf:type schema:DefinedTerm
    164 Ne38e8a8747e34d4f8fc630662f244dd2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Environment
    166 rdf:type schema:DefinedTerm
    167 Ne3d8949fced14add9a19311feeed7879 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Polymorphism, Genetic
    169 rdf:type schema:DefinedTerm
    170 Neab2f1db922342aab142af8a40e43e0a schema:volumeNumber 125
    171 rdf:type schema:PublicationVolume
    172 Nfb5bcb3c4ba34b8f9a95727b9f632d77 schema:issueNumber 5
    173 rdf:type schema:PublicationIssue
    174 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    175 schema:name Biological Sciences
    176 rdf:type schema:DefinedTerm
    177 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    178 schema:name Genetics
    179 rdf:type schema:DefinedTerm
    180 sg:grant.4931378 http://pending.schema.org/fundedItem sg:pub.10.1007/s00122-012-1878-7
    181 rdf:type schema:MonetaryGrant
    182 sg:journal.1135804 schema:issn 0040-5752
    183 1432-2242
    184 schema:name Theoretical and Applied Genetics
    185 rdf:type schema:Periodical
    186 sg:person.01015633266.25 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
    187 schema:familyName Zhao
    188 schema:givenName Tuanjie
    189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015633266.25
    190 rdf:type schema:Person
    191 sg:person.01174466073.42 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
    192 schema:familyName Gai
    193 schema:givenName Junyi
    194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174466073.42
    195 rdf:type schema:Person
    196 sg:person.01362213523.44 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
    197 schema:familyName Xing
    198 schema:givenName Guangnan
    199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362213523.44
    200 rdf:type schema:Person
    201 sg:person.0633733744.06 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
    202 schema:familyName Wang
    203 schema:givenName Yufeng
    204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633733744.06
    205 rdf:type schema:Person
    206 sg:person.0636607423.35 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
    207 schema:familyName Zhou
    208 schema:givenName Bin
    209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636607423.35
    210 rdf:type schema:Person
    211 sg:person.0713571320.17 schema:affiliation https://www.grid.ac/institutes/grid.27871.3b
    212 schema:familyName Yu
    213 schema:givenName Deyue
    214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713571320.17
    215 rdf:type schema:Person
    216 sg:person.0720531750.64 schema:affiliation https://www.grid.ac/institutes/grid.418558.5
    217 schema:familyName Chen
    218 schema:givenName Shouyi
    219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720531750.64
    220 rdf:type schema:Person
    221 sg:pub.10.1007/978-0-387-72299-3_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002254224
    222 https://doi.org/10.1007/978-0-387-72299-3_1
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1007/978-1-4020-8992-3_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032038132
    225 https://doi.org/10.1007/978-1-4020-8992-3_7
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1007/s00122-003-1217-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039567147
    228 https://doi.org/10.1007/s00122-003-1217-0
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1007/s00122-003-1527-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021443389
    231 https://doi.org/10.1007/s00122-003-1527-2
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1007/s00122-004-1602-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010747569
    234 https://doi.org/10.1007/s00122-004-1602-3
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1007/s00122-008-0835-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1039060798
    237 https://doi.org/10.1007/s00122-008-0835-y
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1007/s00122-008-0914-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042186916
    240 https://doi.org/10.1007/s00122-008-0914-0
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1007/s00122-009-1234-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049984607
    243 https://doi.org/10.1007/s00122-009-1234-8
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1007/s00122-010-1314-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020323126
    246 https://doi.org/10.1007/s00122-010-1314-9
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1007/s001220050803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050810363
    249 https://doi.org/10.1007/s001220050803
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1007/s10681-008-9728-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1017646335
    252 https://doi.org/10.1007/s10681-008-9728-z
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1007/s10709-004-2741-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004632970
    255 https://doi.org/10.1007/s10709-004-2741-9
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1007/s11032-006-9039-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017693239
    258 https://doi.org/10.1007/s11032-006-9039-9
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1038/nrg1407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000852461
    261 https://doi.org/10.1038/nrg1407
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1186/1297-9686-26-2-91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018846383
    264 https://doi.org/10.1186/1297-9686-26-2-91
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1186/1297-9686-42-39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016944026
    267 https://doi.org/10.1186/1297-9686-42-39
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1016/0888-7543(87)90010-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015284325
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1080/15427528.2011.546093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010437915
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1093/bioinformatics/btm143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029867719
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1093/bioinformatics/btm494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012125806
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1093/jhered/93.1.77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035613632
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1111/j.1439-0523.2011.01862.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028534443
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1146/annurev.ento.45.1.393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011330073
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1270/jsbbs.54.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034684941
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1360/yc-007-1139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065077957
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1534/genetics.106.066811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047329331
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1534/genetics.107.070821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018544987
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1534/genetics.107.083899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010013063
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.2134/agronj1956.00021962004800060008x schema:sameAs https://app.dimensions.ai/details/publication/pub.1068984558
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.2134/agronmonogr16.3ed.c17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088354926
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.2135/cropsci1971.0011183x001100040035x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069015551
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.2135/cropsci1989.0011183x002900030013x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069021978
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.2135/cropsci1999.0011183x003900020038x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069026357
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.2135/cropsci1999.3951464x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069026546
    304 rdf:type schema:CreativeWork
    305 https://doi.org/10.2135/cropsci2000.401233x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069026728
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.2135/cropsci2000.402375x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069026761
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.2135/cropsci2001.1931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069027001
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.2135/cropsci2004.0744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069028680
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.2135/cropsci2005.06-0109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069029516
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.2135/cropsci2006.12.0770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069030193
    316 rdf:type schema:CreativeWork
    317 https://doi.org/10.2135/cropsci2008.09.0561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069030769
    318 rdf:type schema:CreativeWork
    319 https://doi.org/10.3724/sp.j.1006.2008.00008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071318375
    320 rdf:type schema:CreativeWork
    321 https://doi.org/10.3724/sp.j.1006.2008.00067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071318383
    322 rdf:type schema:CreativeWork
    323 https://doi.org/10.3724/sp.j.1006.2008.00361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071318429
    324 rdf:type schema:CreativeWork
    325 https://doi.org/10.3724/sp.j.1006.2010.01100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071319133
    326 rdf:type schema:CreativeWork
    327 https://doi.org/10.5656/ksae.2008.47.4.353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040607798
    328 rdf:type schema:CreativeWork
    329 https://www.grid.ac/institutes/grid.27871.3b schema:alternateName Nanjing Agricultural University
    330 schema:name Soybean Research Institute/National Center for Soybean Improvement/MOA Key Laboratory of Biology and Genetic Improvement of Soybean/National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, People’s Republic of China
    331 rdf:type schema:Organization
    332 https://www.grid.ac/institutes/grid.418558.5 schema:alternateName Institute of Genetics and Developmental Biology
    333 schema:name Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, People’s Republic of China
    334 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...