Quantitative trait loci for carbon isotope discrimination are repeatable across environments and wheat mapping populations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-09-26

AUTHORS

G. J. Rebetzke, A. G. Condon, G. D. Farquhar, R. Appels, R. A. Richards

ABSTRACT

Wheat productivity is commonly limited by a lack of water essential for growth. Carbon isotope discrimination (Δ), through its negative relationship with transpiration efficiency, has been used in selection of higher wheat yields in breeding for rainfed environments. The potential also exists for selection of increased Δ for improved adaptation to irrigated and high rainfall environments. Selection efficiency of Δ would be enhanced with a better understanding of its genetic control. Three wheat mapping populations (Cranbrook/Halberd, Sunco/Tasman and CD87/Katepwa) containing between 161 and 190 F1-derived, doubled-haploid progeny were phenotyped for Δ and agronomic traits in 3–5 well-watered environments. The range for Δ was large among progeny (c. 1.2–2.3‰), contributing to moderate-to-high single environment (h2 = 0.37–0.91) and line-mean (0.63–0.86) heritabilities. Transgressive segregation was large and genetic control complex with between 9 and 13 Δ quantitative trait loci (QTL) identified in each cross. The Δ QTL effects were commonly small, accounting for a modest 1–10% of the total additive genetic variance, while a number of chromosomal regions appeared in two or more populations (e.g. 1BL, 2BS, 3BS, 4AS, 4BS, 5AS, 7AS and 7BS). Some of the Δ genomic regions were associated with variation in heading date (e.g. 2DS, 4AS and 7AL) and/or plant height (e.g. 1BL, 4BS and 4DS) to confound genotypic associations between Δ and grain yield. As a group, high Δ progeny were significantly (P < 0.10–0.01) taller and flowered earlier but produced more biomass and grain yield in favorable environments. After removing the effect of height and heading date, strong genotypic correlations were observed for Δ and both yield and biomass across populations (rg = 0.29–0.57, P < 0.05) as might be expected for the favorable experimental conditions. Thus selection for Δ appears beneficial in increasing grain yield and biomass in favorable environments. However, care must be taken to avoid confounding genotypic differences in Δ with stature and development time when selecting for improved biomass and yield especially in environments experiencing terminal droughts. Polygenic control and small size of individual QTL for Δ may reduce the potential for QTL in marker-assisted selection for improved yield of wheat. More... »

PAGES

123-137

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00122-008-0882-4

DOI

http://dx.doi.org/10.1007/s00122-008-0882-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026594146

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18818897


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Agricultural and Veterinary Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0703", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Crop and Pasture Production", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomass", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carbon Isotopes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosome Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosomes, Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Droughts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Markers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetics, Population", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quantitative Trait Loci", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Triticum", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "CSIRO Plant Industry, P.O. Box 1600, 2601, Canberra, ACT, Australia", 
          "id": "http://www.grid.ac/institutes/grid.417667.5", 
          "name": [
            "CSIRO Plant Industry, P.O. Box 1600, 2601, Canberra, ACT, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rebetzke", 
        "givenName": "G. J.", 
        "id": "sg:person.01322134311.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322134311.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CSIRO Plant Industry, P.O. Box 1600, 2601, Canberra, ACT, Australia", 
          "id": "http://www.grid.ac/institutes/grid.417667.5", 
          "name": [
            "CSIRO Plant Industry, P.O. Box 1600, 2601, Canberra, ACT, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Condon", 
        "givenName": "A. G.", 
        "id": "sg:person.0713206420.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713206420.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Australian National University, P.O. Box 475, 2601, Canberra, ACT, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1001.0", 
          "name": [
            "Australian National University, P.O. Box 475, 2601, Canberra, ACT, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Farquhar", 
        "givenName": "G. D.", 
        "id": "sg:person.0654430611.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654430611.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Comparative Genomics, Murdoch University, 6150, South St Perth, WA, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1025.6", 
          "name": [
            "Centre for Comparative Genomics, Murdoch University, 6150, South St Perth, WA, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Appels", 
        "givenName": "R.", 
        "id": "sg:person.01117454167.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117454167.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CSIRO Plant Industry, P.O. Box 1600, 2601, Canberra, ACT, Australia", 
          "id": "http://www.grid.ac/institutes/grid.417667.5", 
          "name": [
            "CSIRO Plant Industry, P.O. Box 1600, 2601, Canberra, ACT, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Richards", 
        "givenName": "R. A.", 
        "id": "sg:person.0713262051.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713262051.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature03835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006832754", 
          "https://doi.org/10.1038/nature03835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00022168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016065811", 
          "https://doi.org/10.1007/bf00022168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1017594422176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049443065", 
          "https://doi.org/10.1023/a:1017594422176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00042061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037968953", 
          "https://doi.org/10.1007/bf00042061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-3406-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051898191", 
          "https://doi.org/10.1007/978-1-4899-3406-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-002-1028-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017302725", 
          "https://doi.org/10.1007/s00122-002-1028-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00029638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008190211", 
          "https://doi.org/10.1007/bf00029638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:euph.0000019522.80626.48", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049580219", 
          "https://doi.org/10.1023/b:euph.0000019522.80626.48"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-001-0550-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017845169", 
          "https://doi.org/10.1007/s00122-001-0550-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10681-006-9097-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026247791", 
          "https://doi.org/10.1007/s10681-006-9097-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/1-4020-5497-1_74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033548837", 
          "https://doi.org/10.1007/1-4020-5497-1_74"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-09-26", 
    "datePublishedReg": "2008-09-26", 
    "description": "Wheat productivity is commonly limited by a lack of water essential for growth. Carbon isotope discrimination (\u0394), through its negative relationship with transpiration efficiency, has been used in selection of higher wheat yields in breeding for rainfed environments. The potential also exists for selection of increased \u0394 for improved adaptation to irrigated and high rainfall environments. Selection efficiency of \u0394 would be enhanced with a better understanding of its genetic control. Three wheat mapping populations (Cranbrook/Halberd, Sunco/Tasman and CD87/Katepwa) containing between 161 and 190 F1-derived, doubled-haploid progeny were phenotyped for \u0394 and agronomic traits in 3\u20135 well-watered environments. The range for \u0394 was large among progeny (c. 1.2\u20132.3\u2030), contributing to moderate-to-high single environment (h2\u00a0=\u00a00.37\u20130.91) and line-mean (0.63\u20130.86) heritabilities. Transgressive segregation was large and genetic control complex with between 9 and 13 \u0394 quantitative trait loci (QTL) identified in each cross. The \u0394 QTL effects were commonly small, accounting for a modest 1\u201310% of the total additive genetic variance, while a number of chromosomal regions appeared in two or more populations (e.g. 1BL, 2BS, 3BS, 4AS, 4BS, 5AS, 7AS and 7BS). Some of the \u0394 genomic regions were associated with variation in heading date (e.g. 2DS, 4AS and 7AL) and/or plant height (e.g. 1BL, 4BS and 4DS) to confound genotypic associations between \u0394 and grain yield. As a group, high \u0394 progeny were significantly (P\u00a0<\u00a00.10\u20130.01) taller and flowered earlier but produced more biomass and grain yield in favorable environments. After removing the effect of height and heading date, strong genotypic correlations were observed for \u0394 and both yield and biomass across populations (rg\u00a0=\u00a00.29\u20130.57, P\u00a0<\u00a00.05) as might be expected for the favorable experimental conditions. Thus selection for \u0394 appears beneficial in increasing grain yield and biomass in favorable environments. However, care must be taken to avoid confounding genotypic differences in \u0394 with stature and development time when selecting for improved biomass and yield especially in environments experiencing terminal droughts. Polygenic control and small size of individual QTL for \u0394 may reduce the potential for QTL in marker-assisted selection for improved yield of wheat.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00122-008-0882-4", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135804", 
        "issn": [
          "0040-5752", 
          "1432-2242"
        ], 
        "name": "Theoretical and Applied Genetics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "118"
      }
    ], 
    "keywords": [
      "quantitative trait loci", 
      "wheat mapping population", 
      "carbon isotope discrimination", 
      "grain yield", 
      "mapping population", 
      "isotope discrimination", 
      "trait loci", 
      "genetic control", 
      "total additive genetic variance", 
      "individual quantitative trait loci", 
      "higher wheat yield", 
      "strong genotypic correlations", 
      "high rainfall environments", 
      "marker-assisted selection", 
      "favorable environment", 
      "doubled-haploid progeny", 
      "lack of water", 
      "additive genetic variance", 
      "wheat productivity", 
      "rainfed environments", 
      "terminal drought", 
      "wheat yield", 
      "agronomic traits", 
      "transpiration efficiency", 
      "rainfall environments", 
      "plant height", 
      "genotypic correlations", 
      "selection efficiency", 
      "transgressive segregation", 
      "more biomass", 
      "genotypic differences", 
      "improved adaptation", 
      "improved yield", 
      "improved biomass", 
      "polygenic control", 
      "QTL effects", 
      "genetic variance", 
      "yield", 
      "genomic regions", 
      "biomass", 
      "single environment", 
      "progeny", 
      "chromosomal regions", 
      "more populations", 
      "genotypic association", 
      "loci", 
      "selection", 
      "negative relationship", 
      "height", 
      "effect of height", 
      "wheat", 
      "drought", 
      "development time", 
      "productivity", 
      "heritability", 
      "traits", 
      "population", 
      "cross", 
      "favorable experimental conditions", 
      "environment", 
      "date", 
      "growth", 
      "better understanding", 
      "control", 
      "potential", 
      "efficiency", 
      "region", 
      "small size", 
      "adaptation", 
      "water", 
      "segregation", 
      "stature", 
      "variation", 
      "effect", 
      "variance", 
      "conditions", 
      "understanding", 
      "experimental conditions", 
      "lack", 
      "differences", 
      "number", 
      "size", 
      "correlation", 
      "discrimination", 
      "association", 
      "range", 
      "relationship", 
      "time", 
      "group", 
      "care"
    ], 
    "name": "Quantitative trait loci for carbon isotope discrimination are repeatable across environments and wheat mapping populations", 
    "pagination": "123-137", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026594146"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00122-008-0882-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18818897"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00122-008-0882-4", 
      "https://app.dimensions.ai/details/publication/pub.1026594146"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_460.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00122-008-0882-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00122-008-0882-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00122-008-0882-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00122-008-0882-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00122-008-0882-4'


 

This table displays all metadata directly associated to this object as RDF triples.

285 TRIPLES      21 PREDICATES      140 URIs      119 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00122-008-0882-4 schema:about N09e31e743e36491c9626f28491a72321
2 N282b5203a0e341d2bb36c67f0005e543
3 N2e5429b8c44f4eddba6babb9d393975b
4 N4e00c4c22000412db9c3b984cc827c09
5 N5006f28471b440ef8f5dd832db53cefb
6 N7abb2677879640f38d5f7dba9b81bdc5
7 N81deac9ca5024f1c93b6c84ec997a65f
8 N904df895ece74e54917f759966cf02cc
9 N946081e06de14ad7ae9da5cea7d3c79b
10 Nc59da0356a964fda80fcab7cab9e4fd3
11 Nd7c0a6f9dc454d88b72fc00bcd37cafe
12 Ne1adcf647a6743abb2260074370ee53d
13 anzsrc-for:06
14 anzsrc-for:0604
15 anzsrc-for:07
16 anzsrc-for:0703
17 schema:author Na9af1e9bf92a4f219e17542774be6aee
18 schema:citation sg:pub.10.1007/1-4020-5497-1_74
19 sg:pub.10.1007/978-1-4899-3406-2
20 sg:pub.10.1007/bf00022168
21 sg:pub.10.1007/bf00029638
22 sg:pub.10.1007/bf00042061
23 sg:pub.10.1007/s00122-001-0550-4
24 sg:pub.10.1007/s00122-002-1028-8
25 sg:pub.10.1007/s10681-006-9097-4
26 sg:pub.10.1023/a:1017594422176
27 sg:pub.10.1023/b:euph.0000019522.80626.48
28 sg:pub.10.1038/nature03835
29 schema:datePublished 2008-09-26
30 schema:datePublishedReg 2008-09-26
31 schema:description Wheat productivity is commonly limited by a lack of water essential for growth. Carbon isotope discrimination (Δ), through its negative relationship with transpiration efficiency, has been used in selection of higher wheat yields in breeding for rainfed environments. The potential also exists for selection of increased Δ for improved adaptation to irrigated and high rainfall environments. Selection efficiency of Δ would be enhanced with a better understanding of its genetic control. Three wheat mapping populations (Cranbrook/Halberd, Sunco/Tasman and CD87/Katepwa) containing between 161 and 190 F1-derived, doubled-haploid progeny were phenotyped for Δ and agronomic traits in 3–5 well-watered environments. The range for Δ was large among progeny (c. 1.2–2.3‰), contributing to moderate-to-high single environment (h2 = 0.37–0.91) and line-mean (0.63–0.86) heritabilities. Transgressive segregation was large and genetic control complex with between 9 and 13 Δ quantitative trait loci (QTL) identified in each cross. The Δ QTL effects were commonly small, accounting for a modest 1–10% of the total additive genetic variance, while a number of chromosomal regions appeared in two or more populations (e.g. 1BL, 2BS, 3BS, 4AS, 4BS, 5AS, 7AS and 7BS). Some of the Δ genomic regions were associated with variation in heading date (e.g. 2DS, 4AS and 7AL) and/or plant height (e.g. 1BL, 4BS and 4DS) to confound genotypic associations between Δ and grain yield. As a group, high Δ progeny were significantly (P < 0.10–0.01) taller and flowered earlier but produced more biomass and grain yield in favorable environments. After removing the effect of height and heading date, strong genotypic correlations were observed for Δ and both yield and biomass across populations (rg = 0.29–0.57, P < 0.05) as might be expected for the favorable experimental conditions. Thus selection for Δ appears beneficial in increasing grain yield and biomass in favorable environments. However, care must be taken to avoid confounding genotypic differences in Δ with stature and development time when selecting for improved biomass and yield especially in environments experiencing terminal droughts. Polygenic control and small size of individual QTL for Δ may reduce the potential for QTL in marker-assisted selection for improved yield of wheat.
32 schema:genre article
33 schema:isAccessibleForFree false
34 schema:isPartOf Na1bfa6198ccf44ac8090fad8fdaaa80a
35 Nc8ba2d3890c447448f0082463a4fe66b
36 sg:journal.1135804
37 schema:keywords QTL effects
38 adaptation
39 additive genetic variance
40 agronomic traits
41 association
42 better understanding
43 biomass
44 carbon isotope discrimination
45 care
46 chromosomal regions
47 conditions
48 control
49 correlation
50 cross
51 date
52 development time
53 differences
54 discrimination
55 doubled-haploid progeny
56 drought
57 effect
58 effect of height
59 efficiency
60 environment
61 experimental conditions
62 favorable environment
63 favorable experimental conditions
64 genetic control
65 genetic variance
66 genomic regions
67 genotypic association
68 genotypic correlations
69 genotypic differences
70 grain yield
71 group
72 growth
73 height
74 heritability
75 high rainfall environments
76 higher wheat yield
77 improved adaptation
78 improved biomass
79 improved yield
80 individual quantitative trait loci
81 isotope discrimination
82 lack
83 lack of water
84 loci
85 mapping population
86 marker-assisted selection
87 more biomass
88 more populations
89 negative relationship
90 number
91 plant height
92 polygenic control
93 population
94 potential
95 productivity
96 progeny
97 quantitative trait loci
98 rainfall environments
99 rainfed environments
100 range
101 region
102 relationship
103 segregation
104 selection
105 selection efficiency
106 single environment
107 size
108 small size
109 stature
110 strong genotypic correlations
111 terminal drought
112 time
113 total additive genetic variance
114 trait loci
115 traits
116 transgressive segregation
117 transpiration efficiency
118 understanding
119 variance
120 variation
121 water
122 wheat
123 wheat mapping population
124 wheat productivity
125 wheat yield
126 yield
127 schema:name Quantitative trait loci for carbon isotope discrimination are repeatable across environments and wheat mapping populations
128 schema:pagination 123-137
129 schema:productId N3f7187eb3085452fbba81a0daae6e82f
130 N405fa0dbca8b4073b0746be95ae51758
131 Nb06ec712e1514baca2fe9b747f0a5e02
132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026594146
133 https://doi.org/10.1007/s00122-008-0882-4
134 schema:sdDatePublished 2022-12-01T06:27
135 schema:sdLicense https://scigraph.springernature.com/explorer/license/
136 schema:sdPublisher Nb46fbdf7ad784aae9ea42a72a66e4ace
137 schema:url https://doi.org/10.1007/s00122-008-0882-4
138 sgo:license sg:explorer/license/
139 sgo:sdDataset articles
140 rdf:type schema:ScholarlyArticle
141 N09e31e743e36491c9626f28491a72321 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Triticum
143 rdf:type schema:DefinedTerm
144 N282b5203a0e341d2bb36c67f0005e543 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Environment
146 rdf:type schema:DefinedTerm
147 N2e5429b8c44f4eddba6babb9d393975b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name DNA, Plant
149 rdf:type schema:DefinedTerm
150 N3f7187eb3085452fbba81a0daae6e82f schema:name doi
151 schema:value 10.1007/s00122-008-0882-4
152 rdf:type schema:PropertyValue
153 N405fa0dbca8b4073b0746be95ae51758 schema:name dimensions_id
154 schema:value pub.1026594146
155 rdf:type schema:PropertyValue
156 N4e00c4c22000412db9c3b984cc827c09 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Genetics, Population
158 rdf:type schema:DefinedTerm
159 N5006f28471b440ef8f5dd832db53cefb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Quantitative Trait Loci
161 rdf:type schema:DefinedTerm
162 N576667a1f4c849bb9aa97d769ad546ac rdf:first sg:person.0654430611.51
163 rdf:rest N57a39d77a5fb4374a959972a0cc9343b
164 N57a39d77a5fb4374a959972a0cc9343b rdf:first sg:person.01117454167.49
165 rdf:rest N9ca291a0d9cb4fdca730f8e444dda8ee
166 N7abb2677879640f38d5f7dba9b81bdc5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Carbon Isotopes
168 rdf:type schema:DefinedTerm
169 N7b364dcfce27406592801ca66aa11197 rdf:first sg:person.0713206420.66
170 rdf:rest N576667a1f4c849bb9aa97d769ad546ac
171 N81deac9ca5024f1c93b6c84ec997a65f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Genotype
173 rdf:type schema:DefinedTerm
174 N904df895ece74e54917f759966cf02cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Chromosome Mapping
176 rdf:type schema:DefinedTerm
177 N946081e06de14ad7ae9da5cea7d3c79b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Genetic Markers
179 rdf:type schema:DefinedTerm
180 N9ca291a0d9cb4fdca730f8e444dda8ee rdf:first sg:person.0713262051.02
181 rdf:rest rdf:nil
182 Na1bfa6198ccf44ac8090fad8fdaaa80a schema:volumeNumber 118
183 rdf:type schema:PublicationVolume
184 Na9af1e9bf92a4f219e17542774be6aee rdf:first sg:person.01322134311.77
185 rdf:rest N7b364dcfce27406592801ca66aa11197
186 Nb06ec712e1514baca2fe9b747f0a5e02 schema:name pubmed_id
187 schema:value 18818897
188 rdf:type schema:PropertyValue
189 Nb46fbdf7ad784aae9ea42a72a66e4ace schema:name Springer Nature - SN SciGraph project
190 rdf:type schema:Organization
191 Nc59da0356a964fda80fcab7cab9e4fd3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Droughts
193 rdf:type schema:DefinedTerm
194 Nc8ba2d3890c447448f0082463a4fe66b schema:issueNumber 1
195 rdf:type schema:PublicationIssue
196 Nd7c0a6f9dc454d88b72fc00bcd37cafe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Biomass
198 rdf:type schema:DefinedTerm
199 Ne1adcf647a6743abb2260074370ee53d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Chromosomes, Plant
201 rdf:type schema:DefinedTerm
202 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
203 schema:name Biological Sciences
204 rdf:type schema:DefinedTerm
205 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
206 schema:name Genetics
207 rdf:type schema:DefinedTerm
208 anzsrc-for:07 schema:inDefinedTermSet anzsrc-for:
209 schema:name Agricultural and Veterinary Sciences
210 rdf:type schema:DefinedTerm
211 anzsrc-for:0703 schema:inDefinedTermSet anzsrc-for:
212 schema:name Crop and Pasture Production
213 rdf:type schema:DefinedTerm
214 sg:journal.1135804 schema:issn 0040-5752
215 1432-2242
216 schema:name Theoretical and Applied Genetics
217 schema:publisher Springer Nature
218 rdf:type schema:Periodical
219 sg:person.01117454167.49 schema:affiliation grid-institutes:grid.1025.6
220 schema:familyName Appels
221 schema:givenName R.
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117454167.49
223 rdf:type schema:Person
224 sg:person.01322134311.77 schema:affiliation grid-institutes:grid.417667.5
225 schema:familyName Rebetzke
226 schema:givenName G. J.
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322134311.77
228 rdf:type schema:Person
229 sg:person.0654430611.51 schema:affiliation grid-institutes:grid.1001.0
230 schema:familyName Farquhar
231 schema:givenName G. D.
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654430611.51
233 rdf:type schema:Person
234 sg:person.0713206420.66 schema:affiliation grid-institutes:grid.417667.5
235 schema:familyName Condon
236 schema:givenName A. G.
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713206420.66
238 rdf:type schema:Person
239 sg:person.0713262051.02 schema:affiliation grid-institutes:grid.417667.5
240 schema:familyName Richards
241 schema:givenName R. A.
242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713262051.02
243 rdf:type schema:Person
244 sg:pub.10.1007/1-4020-5497-1_74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033548837
245 https://doi.org/10.1007/1-4020-5497-1_74
246 rdf:type schema:CreativeWork
247 sg:pub.10.1007/978-1-4899-3406-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051898191
248 https://doi.org/10.1007/978-1-4899-3406-2
249 rdf:type schema:CreativeWork
250 sg:pub.10.1007/bf00022168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016065811
251 https://doi.org/10.1007/bf00022168
252 rdf:type schema:CreativeWork
253 sg:pub.10.1007/bf00029638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008190211
254 https://doi.org/10.1007/bf00029638
255 rdf:type schema:CreativeWork
256 sg:pub.10.1007/bf00042061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037968953
257 https://doi.org/10.1007/bf00042061
258 rdf:type schema:CreativeWork
259 sg:pub.10.1007/s00122-001-0550-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017845169
260 https://doi.org/10.1007/s00122-001-0550-4
261 rdf:type schema:CreativeWork
262 sg:pub.10.1007/s00122-002-1028-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017302725
263 https://doi.org/10.1007/s00122-002-1028-8
264 rdf:type schema:CreativeWork
265 sg:pub.10.1007/s10681-006-9097-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026247791
266 https://doi.org/10.1007/s10681-006-9097-4
267 rdf:type schema:CreativeWork
268 sg:pub.10.1023/a:1017594422176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049443065
269 https://doi.org/10.1023/a:1017594422176
270 rdf:type schema:CreativeWork
271 sg:pub.10.1023/b:euph.0000019522.80626.48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049580219
272 https://doi.org/10.1023/b:euph.0000019522.80626.48
273 rdf:type schema:CreativeWork
274 sg:pub.10.1038/nature03835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006832754
275 https://doi.org/10.1038/nature03835
276 rdf:type schema:CreativeWork
277 grid-institutes:grid.1001.0 schema:alternateName Australian National University, P.O. Box 475, 2601, Canberra, ACT, Australia
278 schema:name Australian National University, P.O. Box 475, 2601, Canberra, ACT, Australia
279 rdf:type schema:Organization
280 grid-institutes:grid.1025.6 schema:alternateName Centre for Comparative Genomics, Murdoch University, 6150, South St Perth, WA, Australia
281 schema:name Centre for Comparative Genomics, Murdoch University, 6150, South St Perth, WA, Australia
282 rdf:type schema:Organization
283 grid-institutes:grid.417667.5 schema:alternateName CSIRO Plant Industry, P.O. Box 1600, 2601, Canberra, ACT, Australia
284 schema:name CSIRO Plant Industry, P.O. Box 1600, 2601, Canberra, ACT, Australia
285 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...