Genetic analysis of agronomic and quality traits in mustard (Brassica juncea) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-08

AUTHORS

E. Lionneton, G. Aubert, S. Ochatt, O. Merah

ABSTRACT

To develop an efficient mustard (Brassica juncea) breeding programme, a better knowledge of the genetic control and relationships of the main selected characters is needed. Thus, doubled haploid (DH) lines were evaluated over 2 years in the field. Days to flowering, plant height, thousand-seed weight, fatty acid composition, seed oil content, sinigrin, gluconapin and total glucosinolate contents were determined in the DH population. The influence of seed coat colour was estimated. Results showed significant differences between yellow and brown seeds only for oil and fatty acid contents. Molecular analysis revealed that seed coat colour is associated with two Mendelian trait loci: Bjc1 [on linkage group (LG) 3] and Bjc2 (on LG6). The quantitative trait loci associated with characters-detected by composite interval mapping-were not co-localised and revealed a genetic independence. The results obtained in this study show that the most important agronomic and quality traits of brown mustard could be bred independently. Correlation between the studied traits is also discussed. More... »

PAGES

792-799

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00122-004-1682-0

DOI

http://dx.doi.org/10.1007/s00122-004-1682-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026814946

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15340689


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Analysis of Variance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breeding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosome Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Color", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Crosses, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fatty Acids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "France", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mustard Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quantitative Trait Loci", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Seeds", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Weather", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "INRA, URLEG, BP 86510, 21065, Dijon Cedex, France", 
            "FICF, 8 rue d\u2019Isly, 75008, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lionneton", 
        "givenName": "E.", 
        "id": "sg:person.0742577324.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742577324.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "INRA, URLEG, BP 86510, 21065, Dijon Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aubert", 
        "givenName": "G.", 
        "id": "sg:person.01104656014.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104656014.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "INRA, URLEG, BP 86510, 21065, Dijon Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ochatt", 
        "givenName": "S.", 
        "id": "sg:person.01210263657.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210263657.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "DAE, ENESAD, 21, Boulevard Olivier de Serres, 21800, Quetigny, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Merah", 
        "givenName": "O.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.4141/cjps79-100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001815496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1360-1385(97)90026-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001999951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1360-1385(97)90026-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001999951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4141/cjps90-050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007588911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1439-0523.1986.tb01307.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010187280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/g03-051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011931298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/g01-082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013275123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00222388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013315619", 
          "https://doi.org/10.1007/bf00222388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001220100619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013655481", 
          "https://doi.org/10.1007/s001220100619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001220100619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013655481", 
          "https://doi.org/10.1007/s001220100619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-003-1244-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019008901", 
          "https://doi.org/10.1007/s00122-003-1244-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00122-003-1244-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019008901", 
          "https://doi.org/10.1007/s00122-003-1244-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1439-0523.1993.tb00650.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019859708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/g02-095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022588044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03262973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023160516", 
          "https://doi.org/10.1007/bf03262973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1996.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023522982", 
          "https://doi.org/10.1038/hdy.1996.109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1996.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023522982", 
          "https://doi.org/10.1038/hdy.1996.109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-4211(83)90171-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023574664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1994.39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023657537", 
          "https://doi.org/10.1038/hdy.1994.39"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1994.39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023657537", 
          "https://doi.org/10.1038/hdy.1994.39"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002990000292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025552778", 
          "https://doi.org/10.1007/s002990000292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002990000292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025552778", 
          "https://doi.org/10.1007/s002990000292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002990000292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025552778", 
          "https://doi.org/10.1007/s002990000292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1439-0523.2001.00658.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028902940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001220051463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029520776", 
          "https://doi.org/10.1007/s001220051463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001220051463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029520776", 
          "https://doi.org/10.1007/s001220051463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.hdy.6880340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033766774", 
          "https://doi.org/10.1038/sj.hdy.6880340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4141/cjps82-006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042135388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/gen-44-5-856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062891780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.17660/actahortic.1998.459.15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068396499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082535482", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082609467", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-08", 
    "datePublishedReg": "2004-08-01", 
    "description": "To develop an efficient mustard (Brassica juncea) breeding programme, a better knowledge of the genetic control and relationships of the main selected characters is needed. Thus, doubled haploid (DH) lines were evaluated over 2 years in the field. Days to flowering, plant height, thousand-seed weight, fatty acid composition, seed oil content, sinigrin, gluconapin and total glucosinolate contents were determined in the DH population. The influence of seed coat colour was estimated. Results showed significant differences between yellow and brown seeds only for oil and fatty acid contents. Molecular analysis revealed that seed coat colour is associated with two Mendelian trait loci: Bjc1 [on linkage group (LG) 3] and Bjc2 (on LG6). The quantitative trait loci associated with characters-detected by composite interval mapping-were not co-localised and revealed a genetic independence. The results obtained in this study show that the most important agronomic and quality traits of brown mustard could be bred independently. Correlation between the studied traits is also discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00122-004-1682-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135804", 
        "issn": [
          "0040-5752", 
          "1432-2242"
        ], 
        "name": "Theoretical and Applied Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "109"
      }
    ], 
    "name": "Genetic analysis of agronomic and quality traits in mustard (Brassica juncea)", 
    "pagination": "792-799", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7fbde1ff871f8738a61e00f41e4d724f768d84d197c47dd5e23f70b8bcccebd7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15340689"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0145600"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00122-004-1682-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026814946"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00122-004-1682-0", 
      "https://app.dimensions.ai/details/publication/pub.1026814946"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13078_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00122-004-1682-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00122-004-1682-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00122-004-1682-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00122-004-1682-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00122-004-1682-0'


 

This table displays all metadata directly associated to this object as RDF triples.

222 TRIPLES      21 PREDICATES      65 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00122-004-1682-0 schema:about N1478a9d924994707a1bff73b3310ed37
2 N221fac788b7045089eeaf5b31de98259
3 N295bdb7c9783476fb74976958242ef20
4 N2d75e1e3927e4878ab25bb667fb4cf93
5 N4619af518ebc4f9c81aa60715f290d68
6 N4cc55f6fb31b4f16b3639ad2d67ba1c5
7 N797a197312c340d3ab0e1e55c9b09e18
8 N807ddad001d04836a0b9f66b7664830b
9 Na0b51d454b174a558fdd16b6e2ced84a
10 Ncc5f4231223f4decb615137883cc9e1e
11 Nd2a0a34191044a8f86de0e09854d58db
12 Nfe0085757d444669ac858149c5ccb376
13 anzsrc-for:06
14 anzsrc-for:0604
15 schema:author N5be2430095f245efa8a4234d78e308ce
16 schema:citation sg:pub.10.1007/bf00222388
17 sg:pub.10.1007/bf03262973
18 sg:pub.10.1007/s00122-003-1244-x
19 sg:pub.10.1007/s001220051463
20 sg:pub.10.1007/s001220100619
21 sg:pub.10.1007/s002990000292
22 sg:pub.10.1038/hdy.1994.39
23 sg:pub.10.1038/hdy.1996.109
24 sg:pub.10.1038/sj.hdy.6880340
25 https://app.dimensions.ai/details/publication/pub.1082535482
26 https://app.dimensions.ai/details/publication/pub.1082609467
27 https://doi.org/10.1016/0304-4211(83)90171-2
28 https://doi.org/10.1016/s1360-1385(97)90026-1
29 https://doi.org/10.1046/j.1439-0523.2001.00658.x
30 https://doi.org/10.1111/j.1439-0523.1986.tb01307.x
31 https://doi.org/10.1111/j.1439-0523.1993.tb00650.x
32 https://doi.org/10.1139/g01-082
33 https://doi.org/10.1139/g02-095
34 https://doi.org/10.1139/g03-051
35 https://doi.org/10.1139/gen-44-5-856
36 https://doi.org/10.17660/actahortic.1998.459.15
37 https://doi.org/10.4141/cjps79-100
38 https://doi.org/10.4141/cjps82-006
39 https://doi.org/10.4141/cjps90-050
40 schema:datePublished 2004-08
41 schema:datePublishedReg 2004-08-01
42 schema:description To develop an efficient mustard (Brassica juncea) breeding programme, a better knowledge of the genetic control and relationships of the main selected characters is needed. Thus, doubled haploid (DH) lines were evaluated over 2 years in the field. Days to flowering, plant height, thousand-seed weight, fatty acid composition, seed oil content, sinigrin, gluconapin and total glucosinolate contents were determined in the DH population. The influence of seed coat colour was estimated. Results showed significant differences between yellow and brown seeds only for oil and fatty acid contents. Molecular analysis revealed that seed coat colour is associated with two Mendelian trait loci: Bjc1 [on linkage group (LG) 3] and Bjc2 (on LG6). The quantitative trait loci associated with characters-detected by composite interval mapping-were not co-localised and revealed a genetic independence. The results obtained in this study show that the most important agronomic and quality traits of brown mustard could be bred independently. Correlation between the studied traits is also discussed.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf Nab5a6d0410f64bf9887753e45d9329d9
47 Naf75c9fb32ff4d1b84f33d9e71107e6d
48 sg:journal.1135804
49 schema:name Genetic analysis of agronomic and quality traits in mustard (Brassica juncea)
50 schema:pagination 792-799
51 schema:productId N147c2f72e4db4ecfbb13a18fa21a1123
52 N598e212ba7f248979c9c8c537e255ee2
53 Nb580fa12e2214673b4b92559eb947fad
54 Nc7ab3ac1fcd74bcfa515208ea6339c7c
55 Nc961dd2d38e540909658c5e2028c6284
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026814946
57 https://doi.org/10.1007/s00122-004-1682-0
58 schema:sdDatePublished 2019-04-11T14:27
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N7b6edcf22343434bbc9de6a42d57bdd3
61 schema:url http://link.springer.com/10.1007%2Fs00122-004-1682-0
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N06d910eb5be641c0999e707d5c97254c schema:name INRA, URLEG, BP 86510, 21065, Dijon Cedex, France
66 rdf:type schema:Organization
67 N1478a9d924994707a1bff73b3310ed37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Color
69 rdf:type schema:DefinedTerm
70 N147c2f72e4db4ecfbb13a18fa21a1123 schema:name dimensions_id
71 schema:value pub.1026814946
72 rdf:type schema:PropertyValue
73 N221fac788b7045089eeaf5b31de98259 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Seeds
75 rdf:type schema:DefinedTerm
76 N26eb37a4e44b4909ac1c38f3ae7dc0eb rdf:first sg:person.01104656014.42
77 rdf:rest N286c43be76564202a7842aa785c01fff
78 N286c43be76564202a7842aa785c01fff rdf:first sg:person.01210263657.78
79 rdf:rest N5cf9011f7acb430a8bafb2222cc4b9b4
80 N295bdb7c9783476fb74976958242ef20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Chromosome Mapping
82 rdf:type schema:DefinedTerm
83 N2d75e1e3927e4878ab25bb667fb4cf93 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Phenotype
85 rdf:type schema:DefinedTerm
86 N2ed912fecfa24ccba4df07d3dbc144f1 schema:name FICF, 8 rue d’Isly, 75008, Paris, France
87 INRA, URLEG, BP 86510, 21065, Dijon Cedex, France
88 rdf:type schema:Organization
89 N4100d1c5faea403ab86e6b20f734c1ac schema:name DAE, ENESAD, 21, Boulevard Olivier de Serres, 21800, Quetigny, France
90 rdf:type schema:Organization
91 N4619af518ebc4f9c81aa60715f290d68 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Weather
93 rdf:type schema:DefinedTerm
94 N4cc55f6fb31b4f16b3639ad2d67ba1c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Breeding
96 rdf:type schema:DefinedTerm
97 N598e212ba7f248979c9c8c537e255ee2 schema:name pubmed_id
98 schema:value 15340689
99 rdf:type schema:PropertyValue
100 N5be2430095f245efa8a4234d78e308ce rdf:first sg:person.0742577324.09
101 rdf:rest N26eb37a4e44b4909ac1c38f3ae7dc0eb
102 N5cf9011f7acb430a8bafb2222cc4b9b4 rdf:first N6cb04391c9f245d4be949cd54ac2d1d5
103 rdf:rest rdf:nil
104 N6cb04391c9f245d4be949cd54ac2d1d5 schema:affiliation N4100d1c5faea403ab86e6b20f734c1ac
105 schema:familyName Merah
106 schema:givenName O.
107 rdf:type schema:Person
108 N797a197312c340d3ab0e1e55c9b09e18 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Fatty Acids
110 rdf:type schema:DefinedTerm
111 N7b6edcf22343434bbc9de6a42d57bdd3 schema:name Springer Nature - SN SciGraph project
112 rdf:type schema:Organization
113 N807ddad001d04836a0b9f66b7664830b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Crosses, Genetic
115 rdf:type schema:DefinedTerm
116 Na0b51d454b174a558fdd16b6e2ced84a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Analysis of Variance
118 rdf:type schema:DefinedTerm
119 Nab5a6d0410f64bf9887753e45d9329d9 schema:volumeNumber 109
120 rdf:type schema:PublicationVolume
121 Naf75c9fb32ff4d1b84f33d9e71107e6d schema:issueNumber 4
122 rdf:type schema:PublicationIssue
123 Nb0c113a225d94fb1a99ab5718d9871c7 schema:name INRA, URLEG, BP 86510, 21065, Dijon Cedex, France
124 rdf:type schema:Organization
125 Nb580fa12e2214673b4b92559eb947fad schema:name doi
126 schema:value 10.1007/s00122-004-1682-0
127 rdf:type schema:PropertyValue
128 Nc7ab3ac1fcd74bcfa515208ea6339c7c schema:name readcube_id
129 schema:value 7fbde1ff871f8738a61e00f41e4d724f768d84d197c47dd5e23f70b8bcccebd7
130 rdf:type schema:PropertyValue
131 Nc961dd2d38e540909658c5e2028c6284 schema:name nlm_unique_id
132 schema:value 0145600
133 rdf:type schema:PropertyValue
134 Ncc5f4231223f4decb615137883cc9e1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Quantitative Trait Loci
136 rdf:type schema:DefinedTerm
137 Nd2a0a34191044a8f86de0e09854d58db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name France
139 rdf:type schema:DefinedTerm
140 Nfe0085757d444669ac858149c5ccb376 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Mustard Plant
142 rdf:type schema:DefinedTerm
143 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
144 schema:name Biological Sciences
145 rdf:type schema:DefinedTerm
146 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
147 schema:name Genetics
148 rdf:type schema:DefinedTerm
149 sg:journal.1135804 schema:issn 0040-5752
150 1432-2242
151 schema:name Theoretical and Applied Genetics
152 rdf:type schema:Periodical
153 sg:person.01104656014.42 schema:affiliation Nb0c113a225d94fb1a99ab5718d9871c7
154 schema:familyName Aubert
155 schema:givenName G.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104656014.42
157 rdf:type schema:Person
158 sg:person.01210263657.78 schema:affiliation N06d910eb5be641c0999e707d5c97254c
159 schema:familyName Ochatt
160 schema:givenName S.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210263657.78
162 rdf:type schema:Person
163 sg:person.0742577324.09 schema:affiliation N2ed912fecfa24ccba4df07d3dbc144f1
164 schema:familyName Lionneton
165 schema:givenName E.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742577324.09
167 rdf:type schema:Person
168 sg:pub.10.1007/bf00222388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013315619
169 https://doi.org/10.1007/bf00222388
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/bf03262973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023160516
172 https://doi.org/10.1007/bf03262973
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s00122-003-1244-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019008901
175 https://doi.org/10.1007/s00122-003-1244-x
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s001220051463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029520776
178 https://doi.org/10.1007/s001220051463
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/s001220100619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013655481
181 https://doi.org/10.1007/s001220100619
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/s002990000292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025552778
184 https://doi.org/10.1007/s002990000292
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/hdy.1994.39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023657537
187 https://doi.org/10.1038/hdy.1994.39
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/hdy.1996.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023522982
190 https://doi.org/10.1038/hdy.1996.109
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/sj.hdy.6880340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033766774
193 https://doi.org/10.1038/sj.hdy.6880340
194 rdf:type schema:CreativeWork
195 https://app.dimensions.ai/details/publication/pub.1082535482 schema:CreativeWork
196 https://app.dimensions.ai/details/publication/pub.1082609467 schema:CreativeWork
197 https://doi.org/10.1016/0304-4211(83)90171-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023574664
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/s1360-1385(97)90026-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001999951
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1046/j.1439-0523.2001.00658.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028902940
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1111/j.1439-0523.1986.tb01307.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010187280
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1111/j.1439-0523.1993.tb00650.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019859708
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1139/g01-082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013275123
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1139/g02-095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022588044
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1139/g03-051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011931298
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1139/gen-44-5-856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062891780
214 rdf:type schema:CreativeWork
215 https://doi.org/10.17660/actahortic.1998.459.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068396499
216 rdf:type schema:CreativeWork
217 https://doi.org/10.4141/cjps79-100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001815496
218 rdf:type schema:CreativeWork
219 https://doi.org/10.4141/cjps82-006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042135388
220 rdf:type schema:CreativeWork
221 https://doi.org/10.4141/cjps90-050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007588911
222 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...