Trinucleotide microsatellites in Norway spruce (Picea abies): their features and the development of molecular markers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-07-04

AUTHORS

I. Scotti, F. Magni, G. Paglia, M. Morgante

ABSTRACT

. Trinucleotide microsatellites have proven to be the markers of choice in human genetic analysis because they are easier to genotype than dinucleotides. Their development can be more time-consuming due to their lower abundance in the genome. We isolated trinucleotide microsatellites in Norway spruce (Picea abies K.) using an enrichment procedure for the genomic-library construction. Here we report on the characterisation of 85 ATC microsatellite-containing clones, from which 39 markers were developed. Many of the clones showed the occurrence of tandem repeats of higher order than the trinucleotide ones, often resembling minisatellite repeats. The sequencing of a sample of the alleles at one of the loci revealed size homoplasy due to base substitutions within the microsatellite region. The presence of ATC motifs within repetitive sequence families was observed. We found a significant relationship between the level of polymorphism and the length of the microsatellite. The levels of variability for ATC trinucleotide markers were lower than those for dinucleotides, both when tested on all loci in a set of six individuals and on a subset of loci in four natural populations. This difference is most likely attributable to lower mutation rates for trinucleotide than for dinucleotide loci. The availability of markers with different mutation rates allows one to select the proper marker set to investigate population processes on different time scales. More... »

PAGES

40-50

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00122-002-0986-1

DOI

http://dx.doi.org/10.1007/s00122-002-0986-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032351703

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/12582869


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Markers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Picea", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Trinucleotide Repeats", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dipartimento di Produzione Vegetale e Tecnologie Agrarie, Universit\u00e0 degli Studi di Udine. Via delle Scienze 208 \u2013 33100 Udine UD, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5390.f", 
          "name": [
            "Dipartimento di Produzione Vegetale e Tecnologie Agrarie, Universit\u00e0 degli Studi di Udine. Via delle Scienze 208 \u2013 33100 Udine UD, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scotti", 
        "givenName": "I.", 
        "id": "sg:person.01032345662.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032345662.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Produzione Vegetale e Tecnologie Agrarie, Universit\u00e0 degli Studi di Udine. Via delle Scienze 208 \u2013 33100 Udine UD, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5390.f", 
          "name": [
            "Dipartimento di Produzione Vegetale e Tecnologie Agrarie, Universit\u00e0 degli Studi di Udine. Via delle Scienze 208 \u2013 33100 Udine UD, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magni", 
        "givenName": "F.", 
        "id": "sg:person.01354673556.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354673556.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Produzione Vegetale e Tecnologie Agrarie, Universit\u00e0 degli Studi di Udine. Via delle Scienze 208 \u2013 33100 Udine UD, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5390.f", 
          "name": [
            "Dipartimento di Produzione Vegetale e Tecnologie Agrarie, Universit\u00e0 degli Studi di Udine. Via delle Scienze 208 \u2013 33100 Udine UD, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paglia", 
        "givenName": "G.", 
        "id": "sg:person.010506626765.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010506626765.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Produzione Vegetale e Tecnologie Agrarie, Universit\u00e0 degli Studi di Udine. Via delle Scienze 208 \u2013 33100 Udine UD, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5390.f", 
          "name": [
            "Dipartimento di Produzione Vegetale e Tecnologie Agrarie, Universit\u00e0 degli Studi di Udine. Via delle Scienze 208 \u2013 33100 Udine UD, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morgante", 
        "givenName": "M.", 
        "id": "sg:person.01044267620.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044267620.47"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002-07-04", 
    "datePublishedReg": "2002-07-04", 
    "description": "Abstract. Trinucleotide microsatellites have proven to be the markers of choice in human genetic analysis because they are easier to genotype than dinucleotides. Their development can be more time-consuming due to their lower abundance in the genome. We isolated trinucleotide microsatellites in Norway spruce (Picea abies K.) using an enrichment procedure for the genomic-library construction. Here we report on the characterisation of 85 ATC microsatellite-containing clones, from which 39 markers were developed. Many of the clones showed the occurrence of tandem repeats of higher order than the trinucleotide ones, often resembling minisatellite repeats. The sequencing of a sample of the alleles at one of the loci revealed size homoplasy due to base substitutions within the microsatellite region. The presence of ATC motifs within repetitive sequence families was observed. We found a significant relationship between the level of polymorphism and the length of the microsatellite. The levels of variability for ATC trinucleotide markers were lower than those for dinucleotides, both when tested on all loci in a set of six individuals and on a subset of loci in four natural populations. This difference is most likely attributable to lower mutation rates for trinucleotide than for dinucleotide loci. The availability of markers with different mutation rates allows one to select the proper marker set to investigate population processes on different time scales.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00122-002-0986-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135804", 
        "issn": [
          "0040-5752", 
          "1432-2242"
        ], 
        "name": "Theoretical and Applied Genetics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "106"
      }
    ], 
    "keywords": [
      "trinucleotide microsatellites", 
      "mutation rate", 
      "microsatellite-containing clones", 
      "repetitive sequence families", 
      "subset of loci", 
      "level of polymorphism", 
      "human genetic analysis", 
      "different mutation rates", 
      "low mutation rate", 
      "availability of markers", 
      "marker of choice", 
      "size homoplasy", 
      "minisatellite repeats", 
      "natural populations", 
      "Norway spruce", 
      "microsatellite regions", 
      "genetic analysis", 
      "tandem repeats", 
      "molecular markers", 
      "sequence families", 
      "microsatellites", 
      "base substitutions", 
      "population processes", 
      "level of variability", 
      "dinucleotide loci", 
      "loci", 
      "low abundance", 
      "proper markers", 
      "repeats", 
      "clones", 
      "dinucleotide", 
      "enrichment procedure", 
      "genome", 
      "spruce", 
      "markers", 
      "homoplasy", 
      "sequencing", 
      "trinucleotide", 
      "motif", 
      "abundance", 
      "alleles", 
      "genotypes", 
      "polymorphism", 
      "family", 
      "different time scales", 
      "development", 
      "substitution", 
      "availability", 
      "population", 
      "levels", 
      "region", 
      "characterisation", 
      "time scales", 
      "variability", 
      "presence", 
      "subset", 
      "occurrence", 
      "individuals", 
      "analysis", 
      "length", 
      "process", 
      "rate", 
      "significant relationship", 
      "relationship", 
      "differences", 
      "features", 
      "set", 
      "samples", 
      "scale", 
      "one", 
      "order", 
      "construction", 
      "choice", 
      "higher order", 
      "procedure", 
      "genomic-library construction", 
      "ATC microsatellite-containing clones", 
      "trinucleotide ones", 
      "ATC motifs", 
      "ATC trinucleotide markers", 
      "trinucleotide markers"
    ], 
    "name": "Trinucleotide microsatellites in Norway spruce (Picea abies): their features and the development of molecular markers", 
    "pagination": "40-50", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032351703"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00122-002-0986-1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "12582869"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00122-002-0986-1", 
      "https://app.dimensions.ai/details/publication/pub.1032351703"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_358.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00122-002-0986-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00122-002-0986-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00122-002-0986-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00122-002-0986-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00122-002-0986-1'


 

This table displays all metadata directly associated to this object as RDF triples.

192 TRIPLES      21 PREDICATES      114 URIs      106 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00122-002-0986-1 schema:about N0a17c7b78e924b9fb7f498b232acc501
2 N2774b4af7e024c948ee48d753df4e9f7
3 N6e8ac241da724b118cace50db5b66926
4 N80728a62807b4f57885d2be7234ec915
5 N87f8fba5882d4d48b9db72e79d1bafb3
6 N8dd2d497582e482d8594c131d6db3848
7 Nd1c93eefc025449aa202153db8ce5042
8 anzsrc-for:06
9 anzsrc-for:0604
10 schema:author Nc1a3e9b28a714078bb14daba310bb2e3
11 schema:datePublished 2002-07-04
12 schema:datePublishedReg 2002-07-04
13 schema:description Abstract. Trinucleotide microsatellites have proven to be the markers of choice in human genetic analysis because they are easier to genotype than dinucleotides. Their development can be more time-consuming due to their lower abundance in the genome. We isolated trinucleotide microsatellites in Norway spruce (Picea abies K.) using an enrichment procedure for the genomic-library construction. Here we report on the characterisation of 85 ATC microsatellite-containing clones, from which 39 markers were developed. Many of the clones showed the occurrence of tandem repeats of higher order than the trinucleotide ones, often resembling minisatellite repeats. The sequencing of a sample of the alleles at one of the loci revealed size homoplasy due to base substitutions within the microsatellite region. The presence of ATC motifs within repetitive sequence families was observed. We found a significant relationship between the level of polymorphism and the length of the microsatellite. The levels of variability for ATC trinucleotide markers were lower than those for dinucleotides, both when tested on all loci in a set of six individuals and on a subset of loci in four natural populations. This difference is most likely attributable to lower mutation rates for trinucleotide than for dinucleotide loci. The availability of markers with different mutation rates allows one to select the proper marker set to investigate population processes on different time scales.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N1b2497e7cdc5452d95b9af0ee37ecbcd
18 Na7cc93b729954b029943fb32e3739ddf
19 sg:journal.1135804
20 schema:keywords ATC microsatellite-containing clones
21 ATC motifs
22 ATC trinucleotide markers
23 Norway spruce
24 abundance
25 alleles
26 analysis
27 availability
28 availability of markers
29 base substitutions
30 characterisation
31 choice
32 clones
33 construction
34 development
35 differences
36 different mutation rates
37 different time scales
38 dinucleotide
39 dinucleotide loci
40 enrichment procedure
41 family
42 features
43 genetic analysis
44 genome
45 genomic-library construction
46 genotypes
47 higher order
48 homoplasy
49 human genetic analysis
50 individuals
51 length
52 level of polymorphism
53 level of variability
54 levels
55 loci
56 low abundance
57 low mutation rate
58 marker of choice
59 markers
60 microsatellite regions
61 microsatellite-containing clones
62 microsatellites
63 minisatellite repeats
64 molecular markers
65 motif
66 mutation rate
67 natural populations
68 occurrence
69 one
70 order
71 polymorphism
72 population
73 population processes
74 presence
75 procedure
76 process
77 proper markers
78 rate
79 region
80 relationship
81 repeats
82 repetitive sequence families
83 samples
84 scale
85 sequence families
86 sequencing
87 set
88 significant relationship
89 size homoplasy
90 spruce
91 subset
92 subset of loci
93 substitution
94 tandem repeats
95 time scales
96 trinucleotide
97 trinucleotide markers
98 trinucleotide microsatellites
99 trinucleotide ones
100 variability
101 schema:name Trinucleotide microsatellites in Norway spruce (Picea abies): their features and the development of molecular markers
102 schema:pagination 40-50
103 schema:productId N43f0f5d88fdc4057a7982cf241e2c84b
104 Ndb4b29d8bfa4434598a4409792d21524
105 Ndc874b071e0944e99f42df5d7bca8c5a
106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032351703
107 https://doi.org/10.1007/s00122-002-0986-1
108 schema:sdDatePublished 2022-01-01T18:12
109 schema:sdLicense https://scigraph.springernature.com/explorer/license/
110 schema:sdPublisher Nf06585ccd1694e43b9650648ee70ef66
111 schema:url https://doi.org/10.1007/s00122-002-0986-1
112 sgo:license sg:explorer/license/
113 sgo:sdDataset articles
114 rdf:type schema:ScholarlyArticle
115 N0a17c7b78e924b9fb7f498b232acc501 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Polymorphism, Genetic
117 rdf:type schema:DefinedTerm
118 N1b2497e7cdc5452d95b9af0ee37ecbcd schema:issueNumber 1
119 rdf:type schema:PublicationIssue
120 N1c3f09058add41d394bccdd4f74240c2 rdf:first sg:person.010506626765.46
121 rdf:rest Nc677038f816d4c9e931c075c39a4718a
122 N2774b4af7e024c948ee48d753df4e9f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Amino Acid Sequence
124 rdf:type schema:DefinedTerm
125 N43f0f5d88fdc4057a7982cf241e2c84b schema:name dimensions_id
126 schema:value pub.1032351703
127 rdf:type schema:PropertyValue
128 N6e8ac241da724b118cace50db5b66926 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Trinucleotide Repeats
130 rdf:type schema:DefinedTerm
131 N80728a62807b4f57885d2be7234ec915 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Molecular Sequence Data
133 rdf:type schema:DefinedTerm
134 N87f8fba5882d4d48b9db72e79d1bafb3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Picea
136 rdf:type schema:DefinedTerm
137 N8dd2d497582e482d8594c131d6db3848 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Base Sequence
139 rdf:type schema:DefinedTerm
140 Na7cc93b729954b029943fb32e3739ddf schema:volumeNumber 106
141 rdf:type schema:PublicationVolume
142 Nc1a3e9b28a714078bb14daba310bb2e3 rdf:first sg:person.01032345662.28
143 rdf:rest Nd2f24761ae2547a389abf27034e4f18f
144 Nc677038f816d4c9e931c075c39a4718a rdf:first sg:person.01044267620.47
145 rdf:rest rdf:nil
146 Nd1c93eefc025449aa202153db8ce5042 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Genetic Markers
148 rdf:type schema:DefinedTerm
149 Nd2f24761ae2547a389abf27034e4f18f rdf:first sg:person.01354673556.23
150 rdf:rest N1c3f09058add41d394bccdd4f74240c2
151 Ndb4b29d8bfa4434598a4409792d21524 schema:name doi
152 schema:value 10.1007/s00122-002-0986-1
153 rdf:type schema:PropertyValue
154 Ndc874b071e0944e99f42df5d7bca8c5a schema:name pubmed_id
155 schema:value 12582869
156 rdf:type schema:PropertyValue
157 Nf06585ccd1694e43b9650648ee70ef66 schema:name Springer Nature - SN SciGraph project
158 rdf:type schema:Organization
159 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
160 schema:name Biological Sciences
161 rdf:type schema:DefinedTerm
162 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
163 schema:name Genetics
164 rdf:type schema:DefinedTerm
165 sg:journal.1135804 schema:issn 0040-5752
166 1432-2242
167 schema:name Theoretical and Applied Genetics
168 schema:publisher Springer Nature
169 rdf:type schema:Periodical
170 sg:person.01032345662.28 schema:affiliation grid-institutes:grid.5390.f
171 schema:familyName Scotti
172 schema:givenName I.
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032345662.28
174 rdf:type schema:Person
175 sg:person.01044267620.47 schema:affiliation grid-institutes:grid.5390.f
176 schema:familyName Morgante
177 schema:givenName M.
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044267620.47
179 rdf:type schema:Person
180 sg:person.010506626765.46 schema:affiliation grid-institutes:grid.5390.f
181 schema:familyName Paglia
182 schema:givenName G.
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010506626765.46
184 rdf:type schema:Person
185 sg:person.01354673556.23 schema:affiliation grid-institutes:grid.5390.f
186 schema:familyName Magni
187 schema:givenName F.
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354673556.23
189 rdf:type schema:Person
190 grid-institutes:grid.5390.f schema:alternateName Dipartimento di Produzione Vegetale e Tecnologie Agrarie, Università degli Studi di Udine. Via delle Scienze 208 – 33100 Udine UD, Italy
191 schema:name Dipartimento di Produzione Vegetale e Tecnologie Agrarie, Università degli Studi di Udine. Via delle Scienze 208 – 33100 Udine UD, Italy
192 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...