Using Hidden Markov Models to characterise intermittent social behaviour in fish shoals View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12-27

AUTHORS

Nikolai W. F. Bode, Michael J. Seitz

ABSTRACT

The movement of animals in groups is widespread in nature. Understanding this phenomenon presents an important problem in ecology with many applications that range from conservation to robotics. Underlying all group movements are interactions between individual animals and it is therefore crucial to understand the mechanisms of this social behaviour. To date, despite promising methodological developments, there are few applications to data of practical statistical techniques that inferentially investigate the extent and nature of social interactions in group movement. We address this gap by demonstrating the usefulness of a Hidden Markov Model approach to characterise individual-level social movement in published trajectory data on three-spined stickleback shoals (Gasterosteus aculeatus) and novel data on guppy shoals (Poecilia reticulata). With these models, we formally test for speed-mediated social interactions and verify that they are present. We further characterise this inferred social behaviour and find that despite the substantial shoal-level differences in movement dynamics between species, it is qualitatively similar in guppies and sticklebacks. It is intermittent, occurring in varying numbers of individuals at different time points. The speeds of interacting fish follow a bimodal distribution, indicating that they are either stationary or move at a preferred mean speed, and social fish with more social neighbours move at higher speeds, on average. Our findings and methodology present steps towards characterising social behaviour in animal groups. More... »

PAGES

7

References to SciGraph publications

  • 2017-06-19. Hierarchical Nonlinear Spatio-temporal Agent-Based Models for Collective Animal Movement in JOURNAL OF AGRICULTURAL, BIOLOGICAL AND ENVIRONMENTAL STATISTICS
  • 2017-06-05. Selecting the Number of States in Hidden Markov Models: Pragmatic Solutions Illustrated Using Animal Movement in JOURNAL OF AGRICULTURAL, BIOLOGICAL AND ENVIRONMENTAL STATISTICS
  • 1986. Behavioural Ecology of Sticklebacks in THE BEHAVIOUR OF TELEOST FISHES
  • 2017-08-08. Modeling Collective Animal Movement Through Interactions in Behavioral States in JOURNAL OF AGRICULTURAL, BIOLOGICAL AND ENVIRONMENTAL STATISTICS
  • 2017-08-21. Virtual Reality for Freely Moving Animals in NATURE METHODS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00114-017-1534-9

    DOI

    http://dx.doi.org/10.1007/s00114-017-1534-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1100075740

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29282542


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology and Cognitive Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Ecology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Markov Chains", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Biological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Motor Activity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Poecilia", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Smegmamorpha", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Social Behavior", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB UK", 
              "id": "http://www.grid.ac/institutes/grid.5337.2", 
              "name": [
                "Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bode", 
            "givenName": "Nikolai W. F.", 
            "id": "sg:person.01120660621.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120660621.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science and Mathematics, Munich University of Applied Sciences, 80335 Munich, Germany", 
              "id": "http://www.grid.ac/institutes/grid.434949.7", 
              "name": [
                "Department of Computer Science and Mathematics, Munich University of Applied Sciences, 80335 Munich, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Seitz", 
            "givenName": "Michael J.", 
            "id": "sg:person.013540646657.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013540646657.07"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s13253-017-0283-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085869883", 
              "https://doi.org/10.1007/s13253-017-0283-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13253-017-0296-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091102938", 
              "https://doi.org/10.1007/s13253-017-0296-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13253-017-0289-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086109003", 
              "https://doi.org/10.1007/s13253-017-0289-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-8261-4_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046191688", 
              "https://doi.org/10.1007/978-1-4684-8261-4_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.4399", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091280886", 
              "https://doi.org/10.1038/nmeth.4399"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-12-27", 
        "datePublishedReg": "2017-12-27", 
        "description": "The movement of animals in groups is widespread in nature. Understanding this phenomenon presents an important problem in ecology with many applications that range from conservation to robotics. Underlying all group movements are interactions between individual animals and it is therefore crucial to understand the mechanisms of this social behaviour. To date, despite promising methodological developments, there are few applications to data of practical statistical techniques that inferentially investigate the extent and nature of social interactions in group movement. We address this gap by demonstrating the usefulness of a Hidden Markov Model approach to characterise individual-level social movement in published trajectory data on three-spined stickleback shoals (Gasterosteus aculeatus) and novel data on guppy shoals (Poecilia reticulata). With these models, we formally test for speed-mediated social interactions and verify that they are present. We further characterise this inferred social behaviour and find that despite the substantial shoal-level differences in movement dynamics between species, it is qualitatively similar in guppies and sticklebacks. It is intermittent, occurring in varying numbers of individuals at different time points. The speeds of interacting fish follow a bimodal distribution, indicating that they are either stationary or move at a preferred mean speed, and social fish with more social neighbours move at higher speeds, on average. Our findings and methodology present steps towards characterising social behaviour in animal groups.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00114-017-1534-9", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1018189", 
            "issn": [
              "0028-1042", 
              "1432-1904"
            ], 
            "name": "The Science of Nature", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "105"
          }
        ], 
        "keywords": [
          "social behavior", 
          "movement of animals", 
          "social interaction", 
          "guppy shoals", 
          "fish shoals", 
          "social fish", 
          "animal groups", 
          "group movement", 
          "number of individuals", 
          "promising methodological developments", 
          "practical statistical techniques", 
          "fish", 
          "social neighbours", 
          "individual animals", 
          "Hidden Markov Model Approach", 
          "stickleback", 
          "guppies", 
          "novel data", 
          "ecology", 
          "shoals", 
          "species", 
          "movement dynamics", 
          "conservation", 
          "different time points", 
          "Markov model approach", 
          "interaction", 
          "Hidden Markov Model", 
          "animals", 
          "behavior", 
          "mechanism", 
          "time points", 
          "bimodal distribution", 
          "methodological developments", 
          "individuals", 
          "Markov model", 
          "movement", 
          "neighbours", 
          "findings", 
          "dynamics", 
          "model approach", 
          "development", 
          "data", 
          "speed", 
          "nature", 
          "date", 
          "group", 
          "robotics", 
          "step", 
          "social movements", 
          "distribution", 
          "statistical techniques", 
          "number", 
          "mean speed", 
          "extent", 
          "differences", 
          "model", 
          "important problem", 
          "phenomenon", 
          "usefulness", 
          "problem", 
          "present step", 
          "gap", 
          "approach", 
          "trajectory data", 
          "applications", 
          "high speed", 
          "point", 
          "technique", 
          "individual-level social movement", 
          "stickleback shoals", 
          "speed-mediated social interactions", 
          "inferred social behaviour", 
          "substantial shoal-level differences", 
          "shoal-level differences", 
          "preferred mean speed", 
          "methodology present steps", 
          "intermittent social behaviour"
        ], 
        "name": "Using Hidden Markov Models to characterise intermittent social behaviour in fish shoals", 
        "pagination": "7", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1100075740"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00114-017-1534-9"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29282542"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00114-017-1534-9", 
          "https://app.dimensions.ai/details/publication/pub.1100075740"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_719.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00114-017-1534-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00114-017-1534-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00114-017-1534-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00114-017-1534-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00114-017-1534-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    205 TRIPLES      22 PREDICATES      117 URIs      102 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00114-017-1534-9 schema:about N007e18bd270c4a9483ef8aa6b7956f6e
    2 N2cd43f1db8744ceab2fdb741e04dd343
    3 N386a3241a55d41bf93337adb1bad924a
    4 N4eeb0f11125f48c594cd5ca51290667c
    5 N59c925fd6e73457187751d30f0bb723d
    6 Nd284c31307034276a59379945bf5dc5a
    7 Nf7fb418e2e124d5e8fe22918703b183a
    8 anzsrc-for:06
    9 anzsrc-for:0602
    10 anzsrc-for:17
    11 anzsrc-for:1701
    12 schema:author N1ee329cdc1884c56b2bcdb79b6dea2e4
    13 schema:citation sg:pub.10.1007/978-1-4684-8261-4_16
    14 sg:pub.10.1007/s13253-017-0283-8
    15 sg:pub.10.1007/s13253-017-0289-2
    16 sg:pub.10.1007/s13253-017-0296-3
    17 sg:pub.10.1038/nmeth.4399
    18 schema:datePublished 2017-12-27
    19 schema:datePublishedReg 2017-12-27
    20 schema:description The movement of animals in groups is widespread in nature. Understanding this phenomenon presents an important problem in ecology with many applications that range from conservation to robotics. Underlying all group movements are interactions between individual animals and it is therefore crucial to understand the mechanisms of this social behaviour. To date, despite promising methodological developments, there are few applications to data of practical statistical techniques that inferentially investigate the extent and nature of social interactions in group movement. We address this gap by demonstrating the usefulness of a Hidden Markov Model approach to characterise individual-level social movement in published trajectory data on three-spined stickleback shoals (Gasterosteus aculeatus) and novel data on guppy shoals (Poecilia reticulata). With these models, we formally test for speed-mediated social interactions and verify that they are present. We further characterise this inferred social behaviour and find that despite the substantial shoal-level differences in movement dynamics between species, it is qualitatively similar in guppies and sticklebacks. It is intermittent, occurring in varying numbers of individuals at different time points. The speeds of interacting fish follow a bimodal distribution, indicating that they are either stationary or move at a preferred mean speed, and social fish with more social neighbours move at higher speeds, on average. Our findings and methodology present steps towards characterising social behaviour in animal groups.
    21 schema:genre article
    22 schema:inLanguage en
    23 schema:isAccessibleForFree true
    24 schema:isPartOf N24ef2d0a2dab4f08820a61225c5e9481
    25 Nec3c1ca90b4a476b8eae14737358ebc8
    26 sg:journal.1018189
    27 schema:keywords Hidden Markov Model
    28 Hidden Markov Model Approach
    29 Markov model
    30 Markov model approach
    31 animal groups
    32 animals
    33 applications
    34 approach
    35 behavior
    36 bimodal distribution
    37 conservation
    38 data
    39 date
    40 development
    41 differences
    42 different time points
    43 distribution
    44 dynamics
    45 ecology
    46 extent
    47 findings
    48 fish
    49 fish shoals
    50 gap
    51 group
    52 group movement
    53 guppies
    54 guppy shoals
    55 high speed
    56 important problem
    57 individual animals
    58 individual-level social movement
    59 individuals
    60 inferred social behaviour
    61 interaction
    62 intermittent social behaviour
    63 mean speed
    64 mechanism
    65 methodological developments
    66 methodology present steps
    67 model
    68 model approach
    69 movement
    70 movement dynamics
    71 movement of animals
    72 nature
    73 neighbours
    74 novel data
    75 number
    76 number of individuals
    77 phenomenon
    78 point
    79 practical statistical techniques
    80 preferred mean speed
    81 present step
    82 problem
    83 promising methodological developments
    84 robotics
    85 shoal-level differences
    86 shoals
    87 social behavior
    88 social fish
    89 social interaction
    90 social movements
    91 social neighbours
    92 species
    93 speed
    94 speed-mediated social interactions
    95 statistical techniques
    96 step
    97 stickleback
    98 stickleback shoals
    99 substantial shoal-level differences
    100 technique
    101 time points
    102 trajectory data
    103 usefulness
    104 schema:name Using Hidden Markov Models to characterise intermittent social behaviour in fish shoals
    105 schema:pagination 7
    106 schema:productId N7e9bf6f3b950468b8a123eb345a783a7
    107 Na77000c6e5294a2590568ae8e91e1af3
    108 Naf2425b95b2e4ba6ad93372f2ab07256
    109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100075740
    110 https://doi.org/10.1007/s00114-017-1534-9
    111 schema:sdDatePublished 2021-12-01T19:38
    112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    113 schema:sdPublisher N63b4ac732e5f465884dbc1aa7290fcf2
    114 schema:url https://doi.org/10.1007/s00114-017-1534-9
    115 sgo:license sg:explorer/license/
    116 sgo:sdDataset articles
    117 rdf:type schema:ScholarlyArticle
    118 N007e18bd270c4a9483ef8aa6b7956f6e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Poecilia
    120 rdf:type schema:DefinedTerm
    121 N1ee329cdc1884c56b2bcdb79b6dea2e4 rdf:first sg:person.01120660621.40
    122 rdf:rest N82018bf628ad414ab4b3b1f67d17f7f5
    123 N24ef2d0a2dab4f08820a61225c5e9481 schema:volumeNumber 105
    124 rdf:type schema:PublicationVolume
    125 N2cd43f1db8744ceab2fdb741e04dd343 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Markov Chains
    127 rdf:type schema:DefinedTerm
    128 N386a3241a55d41bf93337adb1bad924a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Animals
    130 rdf:type schema:DefinedTerm
    131 N4eeb0f11125f48c594cd5ca51290667c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Motor Activity
    133 rdf:type schema:DefinedTerm
    134 N59c925fd6e73457187751d30f0bb723d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Models, Biological
    136 rdf:type schema:DefinedTerm
    137 N63b4ac732e5f465884dbc1aa7290fcf2 schema:name Springer Nature - SN SciGraph project
    138 rdf:type schema:Organization
    139 N7e9bf6f3b950468b8a123eb345a783a7 schema:name dimensions_id
    140 schema:value pub.1100075740
    141 rdf:type schema:PropertyValue
    142 N82018bf628ad414ab4b3b1f67d17f7f5 rdf:first sg:person.013540646657.07
    143 rdf:rest rdf:nil
    144 Na77000c6e5294a2590568ae8e91e1af3 schema:name pubmed_id
    145 schema:value 29282542
    146 rdf:type schema:PropertyValue
    147 Naf2425b95b2e4ba6ad93372f2ab07256 schema:name doi
    148 schema:value 10.1007/s00114-017-1534-9
    149 rdf:type schema:PropertyValue
    150 Nd284c31307034276a59379945bf5dc5a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Smegmamorpha
    152 rdf:type schema:DefinedTerm
    153 Nec3c1ca90b4a476b8eae14737358ebc8 schema:issueNumber 1
    154 rdf:type schema:PublicationIssue
    155 Nf7fb418e2e124d5e8fe22918703b183a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Social Behavior
    157 rdf:type schema:DefinedTerm
    158 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    159 schema:name Biological Sciences
    160 rdf:type schema:DefinedTerm
    161 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
    162 schema:name Ecology
    163 rdf:type schema:DefinedTerm
    164 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
    165 schema:name Psychology and Cognitive Sciences
    166 rdf:type schema:DefinedTerm
    167 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
    168 schema:name Psychology
    169 rdf:type schema:DefinedTerm
    170 sg:journal.1018189 schema:issn 0028-1042
    171 1432-1904
    172 schema:name The Science of Nature
    173 schema:publisher Springer Nature
    174 rdf:type schema:Periodical
    175 sg:person.01120660621.40 schema:affiliation grid-institutes:grid.5337.2
    176 schema:familyName Bode
    177 schema:givenName Nikolai W. F.
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120660621.40
    179 rdf:type schema:Person
    180 sg:person.013540646657.07 schema:affiliation grid-institutes:grid.434949.7
    181 schema:familyName Seitz
    182 schema:givenName Michael J.
    183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013540646657.07
    184 rdf:type schema:Person
    185 sg:pub.10.1007/978-1-4684-8261-4_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046191688
    186 https://doi.org/10.1007/978-1-4684-8261-4_16
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/s13253-017-0283-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085869883
    189 https://doi.org/10.1007/s13253-017-0283-8
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/s13253-017-0289-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086109003
    192 https://doi.org/10.1007/s13253-017-0289-2
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/s13253-017-0296-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091102938
    195 https://doi.org/10.1007/s13253-017-0296-3
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/nmeth.4399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091280886
    198 https://doi.org/10.1038/nmeth.4399
    199 rdf:type schema:CreativeWork
    200 grid-institutes:grid.434949.7 schema:alternateName Department of Computer Science and Mathematics, Munich University of Applied Sciences, 80335 Munich, Germany
    201 schema:name Department of Computer Science and Mathematics, Munich University of Applied Sciences, 80335 Munich, Germany
    202 rdf:type schema:Organization
    203 grid-institutes:grid.5337.2 schema:alternateName Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB UK
    204 schema:name Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB UK
    205 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...