Three-dimensional electron cryo-microscopy as a powerful structural tool in molecular medicine View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-04-28

AUTHORS

Manfred Auer

ABSTRACT

. Electron cryo-microscopy has established itself as a valuable method for the structure determination of protein molecules, protein complexes, and cell organelles. This contribution presents an introduction to the various aspects of three-dimensional electron cryo-microscopy. This includes the need for sample preservation in the microscope vacuum, strategies for minimizing radiation damage, methods of improving the poor signal-to-noise ratio in electron micrographs of unstained specimens, and the various methods of three-dimensional image reconstruction from projections. The various specimen types (e.g., flat and tubular two-dimensional crystals, protein filaments, individual protein molecules, and large complexes) require different means of three-dimensional reconstruction, and we review the five major reconstruction techniques (electron crystallography, helical reconstruction, icosahedral reconstruction, single-particle reconstruction, and electron tomography), with an emphasis on electron crystallography. Several medically relevant three-dimensional protein structures are chosen to illustrate the potential of electron cryo-microscopy and image reconstruction techniques. Among the structural methods, electron cryo-microscopy is the only tool for studying objects that range in size from small proteins over macromolecular complexes to cell organelles or even cells. More... »

PAGES

191-202

References to SciGraph publications

  • 1980-02. Structure of the junction between communicating cells in NATURE
  • 1999-03-09. High-Pressure Freezing for Preservation of High Resolution Fine Structure and Antigenicity for Immunolabeling in ELECTRON MICROSCOPY METHODS AND PROTOCOLS
  • 1998-11. Structure of the outer membrane protein A transmembrane domain in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 1999-01. Crystal structure of the outer membrane active transporter FepA from Escherichia coli in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 1994-02. Atomic model of plant light-harvesting complex by electron crystallography in NATURE
  • 1995-01. Acetylcholine receptor channel imaged in the open state in NATURE
  • 1997-03. Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy in NATURE
  • 1998-04-01. Structure of the calcium pump from sarcoplasmic reticulum at 8-Å resolution in NATURE
  • 1992. The Electron Microscope as a Structure Projector in ELECTRON TOMOGRAPHY
  • 1997-04. Molecular design of aquaporin-1 water channel as revealed by electron crystallography in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 1997-09. Arrangement of rhodopsin transmembrane α-helices in NATURE
  • 1997-03. Visualization of a 4-helix bundle in the hepatitis B virus capsid by cryo-electron microscopy in NATURE
  • 1997-10. Nicotinic acetylcholine receptors in health and disease in MOLECULAR NEUROBIOLOGY
  • 1968-01. Reconstruction of Three Dimensional Structures from Electron Micrographs in NATURE
  • 1997-06-05. Three-dimensional organization of a human water channel in NATURE
  • 1998-04-01. Three-dimensional map of the plasma membrane H+-ATPase in the open conformation in NATURE
  • 1999-11. Structure of fumarate reductase from Wolinella succinogenes at 2.2 Å resolution in NATURE
  • 1998-01. Structure of the αβ tubulin dimer by electron crystallography in NATURE
  • 1999-12. In pursuit of broadband visions in NATURE
  • 1997-06-05. The three-dimensional structure of aquaporin-1 in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s001090000101

    DOI

    http://dx.doi.org/10.1007/s001090000101

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1031893676

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/10933581


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0304", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medicinal and Biomolecular Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cryoelectron Microscopy", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Crystallography, X-Ray", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Imaging, Three-Dimensional", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Magnetic Resonance Spectroscopy", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microscopy, Electron", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Structure", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Receptors, Nicotinic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ribosomes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Viruses", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Skirball Institute of Biomolecular Medicine, New York University Medical Center, 540 First Avenue, New York, NY 10016, USA, USA", 
              "id": "http://www.grid.ac/institutes/grid.240324.3", 
              "name": [
                "Skirball Institute of Biomolecular Medicine, New York University Medical Center, 540 First Avenue, New York, NY 10016, USA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Auer", 
            "givenName": "Manfred", 
            "id": "sg:person.0652233644.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652233644.88"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/367614a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046683584", 
              "https://doi.org/10.1038/367614a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/34465", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016383987", 
              "https://doi.org/10.1038/34465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/46483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031462008", 
              "https://doi.org/10.1038/46483"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02740634", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045973735", 
              "https://doi.org/10.1007/bf02740634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1385/1-59259-201-5:77", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032990732", 
              "https://doi.org/10.1385/1-59259-201-5:77"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/38316", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001623538", 
              "https://doi.org/10.1038/38316"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/2983", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026051292", 
              "https://doi.org/10.1038/2983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/42517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040756855", 
              "https://doi.org/10.1038/42517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/33967", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004651627", 
              "https://doi.org/10.1038/33967"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-2163-8_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016668604", 
              "https://doi.org/10.1007/978-1-4757-2163-8_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/386091a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029610482", 
              "https://doi.org/10.1038/386091a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/373037a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050150805", 
              "https://doi.org/10.1038/373037a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/42512", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017558994", 
              "https://doi.org/10.1038/42512"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/33959", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031486120", 
              "https://doi.org/10.1038/33959"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/44890", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045570562", 
              "https://doi.org/10.1038/44890"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsb0497-263", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045075772", 
              "https://doi.org/10.1038/nsb0497-263"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/386088a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050523440", 
              "https://doi.org/10.1038/386088a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/4931", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007401658", 
              "https://doi.org/10.1038/4931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/217130a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025750249", 
              "https://doi.org/10.1038/217130a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/283545a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001941451", 
              "https://doi.org/10.1038/283545a0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2000-04-28", 
        "datePublishedReg": "2000-04-28", 
        "description": "Abstract. Electron cryo-microscopy has established itself as a valuable method for the structure determination of protein molecules, protein complexes, and cell organelles. This contribution presents an introduction to the various aspects of three-dimensional electron cryo-microscopy. This includes the need for sample preservation in the microscope vacuum, strategies for minimizing radiation damage, methods of improving the poor signal-to-noise ratio in electron micrographs of unstained specimens, and the various methods of three-dimensional image reconstruction from projections. The various specimen types (e.g., flat and tubular two-dimensional crystals, protein filaments, individual protein molecules, and large complexes) require different means of three-dimensional reconstruction, and we review the five major reconstruction techniques (electron crystallography, helical reconstruction, icosahedral reconstruction, single-particle reconstruction, and electron tomography), with an emphasis on electron crystallography. Several medically relevant three-dimensional protein structures are chosen to illustrate the potential of electron cryo-microscopy and image reconstruction techniques. Among the structural methods, electron cryo-microscopy is the only tool for studying objects that range in size from small proteins over macromolecular complexes to cell organelles or even cells.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s001090000101", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1057918", 
            "issn": [
              "0946-2716", 
              "1432-1440"
            ], 
            "name": "Journal of Molecular Medicine", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "78"
          }
        ], 
        "keywords": [
          "three-dimensional electron", 
          "three-dimensional protein structures", 
          "potential of electrons", 
          "protein complexes", 
          "powerful structural tool", 
          "macromolecular complexes", 
          "small proteins", 
          "cell organelles", 
          "microscope vacuum", 
          "protein structure", 
          "electron crystallography", 
          "protein molecules", 
          "three-dimensional image reconstruction", 
          "molecular medicine", 
          "radiation damage", 
          "organelles", 
          "electrons", 
          "unstained specimens", 
          "structural tool", 
          "image reconstruction techniques", 
          "poor signal", 
          "complexes", 
          "sample preservation", 
          "noise ratio", 
          "structure determination", 
          "protein", 
          "structural methods", 
          "reconstruction technique", 
          "three-dimensional reconstruction", 
          "electron micrographs", 
          "image reconstruction", 
          "vacuum", 
          "cells", 
          "molecules", 
          "crystallography", 
          "only tool", 
          "different means", 
          "micrographs", 
          "damage", 
          "valuable method", 
          "technique", 
          "signals", 
          "tool", 
          "structure", 
          "objects", 
          "potential", 
          "types", 
          "reconstruction", 
          "method", 
          "size", 
          "contribution", 
          "strategies", 
          "determination", 
          "specimens", 
          "preservation", 
          "ratio", 
          "aspects", 
          "introduction", 
          "medicine", 
          "means", 
          "emphasis", 
          "projections", 
          "need", 
          "specimen types", 
          "major reconstruction techniques"
        ], 
        "name": "Three-dimensional electron cryo-microscopy as a powerful structural tool in molecular medicine", 
        "pagination": "191-202", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1031893676"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s001090000101"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "10933581"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s001090000101", 
          "https://app.dimensions.ai/details/publication/pub.1031893676"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_333.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s001090000101"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s001090000101'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s001090000101'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s001090000101'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s001090000101'


     

    This table displays all metadata directly associated to this object as RDF triples.

    251 TRIPLES      22 PREDICATES      122 URIs      94 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s001090000101 schema:about N0ca80d5b33674346a0882a1cea8a5aa1
    2 N1489c218a4f24f4db572dcb78cfe104b
    3 N2bcb8cf4c9704764becf8b6cf93ccb05
    4 N53bbfa3947ab400aa7cb114193b64fc9
    5 N7626590fe3654d22a6665cf773c11845
    6 N9d3183050eca472897105b1e60a85e64
    7 Nafe679a7fda2421f96aa829e5825664e
    8 Nc39d05449d624986baea83554e5c1363
    9 Nca3387faf1f446caadc82978f29c4b28
    10 Ncc12ce374627482d801f82a125eee5ac
    11 Ndb53f40370db46ad8b30599b86e3ed09
    12 anzsrc-for:03
    13 anzsrc-for:0304
    14 schema:author N9faf024fd4f54deda307b2013070bd90
    15 schema:citation sg:pub.10.1007/978-1-4757-2163-8_2
    16 sg:pub.10.1007/bf02740634
    17 sg:pub.10.1038/217130a0
    18 sg:pub.10.1038/283545a0
    19 sg:pub.10.1038/2983
    20 sg:pub.10.1038/33959
    21 sg:pub.10.1038/33967
    22 sg:pub.10.1038/34465
    23 sg:pub.10.1038/367614a0
    24 sg:pub.10.1038/373037a0
    25 sg:pub.10.1038/38316
    26 sg:pub.10.1038/386088a0
    27 sg:pub.10.1038/386091a0
    28 sg:pub.10.1038/42512
    29 sg:pub.10.1038/42517
    30 sg:pub.10.1038/44890
    31 sg:pub.10.1038/46483
    32 sg:pub.10.1038/4931
    33 sg:pub.10.1038/nsb0497-263
    34 sg:pub.10.1385/1-59259-201-5:77
    35 schema:datePublished 2000-04-28
    36 schema:datePublishedReg 2000-04-28
    37 schema:description Abstract. Electron cryo-microscopy has established itself as a valuable method for the structure determination of protein molecules, protein complexes, and cell organelles. This contribution presents an introduction to the various aspects of three-dimensional electron cryo-microscopy. This includes the need for sample preservation in the microscope vacuum, strategies for minimizing radiation damage, methods of improving the poor signal-to-noise ratio in electron micrographs of unstained specimens, and the various methods of three-dimensional image reconstruction from projections. The various specimen types (e.g., flat and tubular two-dimensional crystals, protein filaments, individual protein molecules, and large complexes) require different means of three-dimensional reconstruction, and we review the five major reconstruction techniques (electron crystallography, helical reconstruction, icosahedral reconstruction, single-particle reconstruction, and electron tomography), with an emphasis on electron crystallography. Several medically relevant three-dimensional protein structures are chosen to illustrate the potential of electron cryo-microscopy and image reconstruction techniques. Among the structural methods, electron cryo-microscopy is the only tool for studying objects that range in size from small proteins over macromolecular complexes to cell organelles or even cells.
    38 schema:genre article
    39 schema:inLanguage en
    40 schema:isAccessibleForFree false
    41 schema:isPartOf N008b66c551d64dbb92a6aa2afb368119
    42 Nc6efd9345f6f4e3b97012685e774f472
    43 sg:journal.1057918
    44 schema:keywords aspects
    45 cell organelles
    46 cells
    47 complexes
    48 contribution
    49 crystallography
    50 damage
    51 determination
    52 different means
    53 electron crystallography
    54 electron micrographs
    55 electrons
    56 emphasis
    57 image reconstruction
    58 image reconstruction techniques
    59 introduction
    60 macromolecular complexes
    61 major reconstruction techniques
    62 means
    63 medicine
    64 method
    65 micrographs
    66 microscope vacuum
    67 molecular medicine
    68 molecules
    69 need
    70 noise ratio
    71 objects
    72 only tool
    73 organelles
    74 poor signal
    75 potential
    76 potential of electrons
    77 powerful structural tool
    78 preservation
    79 projections
    80 protein
    81 protein complexes
    82 protein molecules
    83 protein structure
    84 radiation damage
    85 ratio
    86 reconstruction
    87 reconstruction technique
    88 sample preservation
    89 signals
    90 size
    91 small proteins
    92 specimen types
    93 specimens
    94 strategies
    95 structural methods
    96 structural tool
    97 structure
    98 structure determination
    99 technique
    100 three-dimensional electron
    101 three-dimensional image reconstruction
    102 three-dimensional protein structures
    103 three-dimensional reconstruction
    104 tool
    105 types
    106 unstained specimens
    107 vacuum
    108 valuable method
    109 schema:name Three-dimensional electron cryo-microscopy as a powerful structural tool in molecular medicine
    110 schema:pagination 191-202
    111 schema:productId N1c231bd3d2e44d1fb877303efbb11431
    112 Ndc4d62357bf74d0bb80075f0e29c3ded
    113 Nef815426415c404c93b00ac14b30ac24
    114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031893676
    115 https://doi.org/10.1007/s001090000101
    116 schema:sdDatePublished 2022-01-01T18:10
    117 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    118 schema:sdPublisher N1e00a550c5c4414aaf0ba17bea3e1ee0
    119 schema:url https://doi.org/10.1007/s001090000101
    120 sgo:license sg:explorer/license/
    121 sgo:sdDataset articles
    122 rdf:type schema:ScholarlyArticle
    123 N008b66c551d64dbb92a6aa2afb368119 schema:volumeNumber 78
    124 rdf:type schema:PublicationVolume
    125 N0ca80d5b33674346a0882a1cea8a5aa1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Viruses
    127 rdf:type schema:DefinedTerm
    128 N1489c218a4f24f4db572dcb78cfe104b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Magnetic Resonance Spectroscopy
    130 rdf:type schema:DefinedTerm
    131 N1c231bd3d2e44d1fb877303efbb11431 schema:name dimensions_id
    132 schema:value pub.1031893676
    133 rdf:type schema:PropertyValue
    134 N1e00a550c5c4414aaf0ba17bea3e1ee0 schema:name Springer Nature - SN SciGraph project
    135 rdf:type schema:Organization
    136 N2bcb8cf4c9704764becf8b6cf93ccb05 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Crystallography, X-Ray
    138 rdf:type schema:DefinedTerm
    139 N53bbfa3947ab400aa7cb114193b64fc9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Molecular Structure
    141 rdf:type schema:DefinedTerm
    142 N7626590fe3654d22a6665cf773c11845 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Microscopy, Electron
    144 rdf:type schema:DefinedTerm
    145 N9d3183050eca472897105b1e60a85e64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Proteins
    147 rdf:type schema:DefinedTerm
    148 N9faf024fd4f54deda307b2013070bd90 rdf:first sg:person.0652233644.88
    149 rdf:rest rdf:nil
    150 Nafe679a7fda2421f96aa829e5825664e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Receptors, Nicotinic
    152 rdf:type schema:DefinedTerm
    153 Nc39d05449d624986baea83554e5c1363 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Cryoelectron Microscopy
    155 rdf:type schema:DefinedTerm
    156 Nc6efd9345f6f4e3b97012685e774f472 schema:issueNumber 4
    157 rdf:type schema:PublicationIssue
    158 Nca3387faf1f446caadc82978f29c4b28 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Ribosomes
    160 rdf:type schema:DefinedTerm
    161 Ncc12ce374627482d801f82a125eee5ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Humans
    163 rdf:type schema:DefinedTerm
    164 Ndb53f40370db46ad8b30599b86e3ed09 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Imaging, Three-Dimensional
    166 rdf:type schema:DefinedTerm
    167 Ndc4d62357bf74d0bb80075f0e29c3ded schema:name doi
    168 schema:value 10.1007/s001090000101
    169 rdf:type schema:PropertyValue
    170 Nef815426415c404c93b00ac14b30ac24 schema:name pubmed_id
    171 schema:value 10933581
    172 rdf:type schema:PropertyValue
    173 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    174 schema:name Chemical Sciences
    175 rdf:type schema:DefinedTerm
    176 anzsrc-for:0304 schema:inDefinedTermSet anzsrc-for:
    177 schema:name Medicinal and Biomolecular Chemistry
    178 rdf:type schema:DefinedTerm
    179 sg:journal.1057918 schema:issn 0946-2716
    180 1432-1440
    181 schema:name Journal of Molecular Medicine
    182 schema:publisher Springer Nature
    183 rdf:type schema:Periodical
    184 sg:person.0652233644.88 schema:affiliation grid-institutes:grid.240324.3
    185 schema:familyName Auer
    186 schema:givenName Manfred
    187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652233644.88
    188 rdf:type schema:Person
    189 sg:pub.10.1007/978-1-4757-2163-8_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016668604
    190 https://doi.org/10.1007/978-1-4757-2163-8_2
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/bf02740634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045973735
    193 https://doi.org/10.1007/bf02740634
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/217130a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025750249
    196 https://doi.org/10.1038/217130a0
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/283545a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001941451
    199 https://doi.org/10.1038/283545a0
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/2983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026051292
    202 https://doi.org/10.1038/2983
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/33959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031486120
    205 https://doi.org/10.1038/33959
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/33967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004651627
    208 https://doi.org/10.1038/33967
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/34465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016383987
    211 https://doi.org/10.1038/34465
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/367614a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046683584
    214 https://doi.org/10.1038/367614a0
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/373037a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050150805
    217 https://doi.org/10.1038/373037a0
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/38316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001623538
    220 https://doi.org/10.1038/38316
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/386088a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050523440
    223 https://doi.org/10.1038/386088a0
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/386091a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029610482
    226 https://doi.org/10.1038/386091a0
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/42512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017558994
    229 https://doi.org/10.1038/42512
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/42517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040756855
    232 https://doi.org/10.1038/42517
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/44890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045570562
    235 https://doi.org/10.1038/44890
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/46483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031462008
    238 https://doi.org/10.1038/46483
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/4931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007401658
    241 https://doi.org/10.1038/4931
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/nsb0497-263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045075772
    244 https://doi.org/10.1038/nsb0497-263
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1385/1-59259-201-5:77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032990732
    247 https://doi.org/10.1385/1-59259-201-5:77
    248 rdf:type schema:CreativeWork
    249 grid-institutes:grid.240324.3 schema:alternateName Skirball Institute of Biomolecular Medicine, New York University Medical Center, 540 First Avenue, New York, NY 10016, USA, USA
    250 schema:name Skirball Institute of Biomolecular Medicine, New York University Medical Center, 540 First Avenue, New York, NY 10016, USA, USA
    251 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...