Discriminating head trauma outcomes using machine learning and genomics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-11-19

AUTHORS

Omar Ibrahim, Heidi G. Sutherland, Rodney A. Lea, Fatima Nasrallah, Neven Maksemous, Robert A. Smith, Larisa M. Haupt, Lyn R. Griffiths

ABSTRACT

A percentage of the population suffers prolonged and persistent post-concussion symptoms (PCS) following average head injuries or develops severe neurological dysfunction following minor head trauma. Genetic variants that may contribute to individual response to head trauma have been investigated in some studies, but to date none have explored the use of machine learning (ML) methods with genomic data to specifically explore outcomes of head trauma. Whole exome sequencing (WES) was completed for three groups of individuals (N = 60): (a) 16 individuals with severe neurological responses to minor head trauma, (b) 26 individuals with persistent PCS and (c) 18 individuals with normal recovery from concussion or mTBI. Gradient boosted tree algorithms were applied to the data using XGBoost. By using variants with CADD scores above 15 in the training set (randomly sampled 70%), we identified signatures that accurately distinguish to accurately distinguish the test groups with an average area under the curve (AUC) of 0.8 (SE = 0.019). Metrics including positive and negative prediction values, as well as kappa were all within acceptable range to support the prediction accuracy. This study illustrates how ML methods in combination with WES data have the potential to predict severe or prolonged responses to head trauma from healthy recovery. Key messagesLinear association analysis has been inconclusive in concussion genetics. Non-linear methods as boosted trees can offer better insights in small samples. Strong discrimination trends can be achieved from exome data of cases and controls. More... »

PAGES

303-312

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00109-021-02158-z

DOI

http://dx.doi.org/10.1007/s00109-021-02158-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1142692604

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/34797388


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0304", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medicinal and Biomolecular Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Craniocerebral Trauma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Machine Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Trauma Severity Indices", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Whole Exome Sequencing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, 4059, Kelvin Grove, QLD, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1024.7", 
          "name": [
            "Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, 4059, Kelvin Grove, QLD, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ibrahim", 
        "givenName": "Omar", 
        "id": "sg:person.012266776767.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012266776767.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, 4059, Kelvin Grove, QLD, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1024.7", 
          "name": [
            "Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, 4059, Kelvin Grove, QLD, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sutherland", 
        "givenName": "Heidi G.", 
        "id": "sg:person.0642646046.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642646046.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, 4059, Kelvin Grove, QLD, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1024.7", 
          "name": [
            "Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, 4059, Kelvin Grove, QLD, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lea", 
        "givenName": "Rodney A.", 
        "id": "sg:person.012075027362.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012075027362.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Queensland Brain Institute, The University of Queensland, Brisbane, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1003.2", 
          "name": [
            "The Queensland Brain Institute, The University of Queensland, Brisbane, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nasrallah", 
        "givenName": "Fatima", 
        "id": "sg:person.01033155751.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033155751.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, 4059, Kelvin Grove, QLD, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1024.7", 
          "name": [
            "Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, 4059, Kelvin Grove, QLD, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maksemous", 
        "givenName": "Neven", 
        "id": "sg:person.0762233475.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762233475.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, 4059, Kelvin Grove, QLD, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1024.7", 
          "name": [
            "Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, 4059, Kelvin Grove, QLD, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smith", 
        "givenName": "Robert A.", 
        "id": "sg:person.01130665536.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130665536.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, 4059, Kelvin Grove, QLD, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1024.7", 
          "name": [
            "Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, 4059, Kelvin Grove, QLD, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haupt", 
        "givenName": "Larisa M.", 
        "id": "sg:person.0755160300.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755160300.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, 4059, Kelvin Grove, QLD, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1024.7", 
          "name": [
            "Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, 4059, Kelvin Grove, QLD, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Griffiths", 
        "givenName": "Lyn R.", 
        "id": "sg:person.01216564673.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216564673.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41598-017-13056-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092023331", 
          "https://doi.org/10.1038/s41598-017-13056-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13073-019-0618-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112168838", 
          "https://doi.org/10.1186/s13073-019-0618-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015057090", 
          "https://doi.org/10.1038/ng.608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/tp.2015.65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051546512", 
          "https://doi.org/10.1038/tp.2015.65"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-019-46649-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1118044228", 
          "https://doi.org/10.1038/s41598-019-46649-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12640-009-9044-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044590250", 
          "https://doi.org/10.1007/s12640-009-9044-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-11-19", 
    "datePublishedReg": "2021-11-19", 
    "description": "A percentage of the population suffers prolonged and persistent post-concussion symptoms (PCS) following average head injuries or develops severe neurological dysfunction following minor head trauma. Genetic variants that may contribute to individual response to head trauma have been investigated in some studies, but to date none have explored the use of machine learning (ML) methods with genomic data to specifically explore outcomes of head trauma. Whole exome sequencing (WES) was completed for three groups of individuals (N\u2009=\u200960): (a) 16 individuals with severe neurological responses to minor head trauma, (b) 26 individuals with persistent PCS and (c) 18 individuals with normal recovery from concussion or mTBI. Gradient boosted tree algorithms were applied to the data using XGBoost. By using variants with CADD scores above 15 in the training set (randomly sampled 70%), we identified signatures that accurately distinguish to accurately distinguish the test groups with an average area under the curve (AUC) of 0.8 (SE\u2009=\u20090.019). Metrics including positive and negative prediction values, as well as kappa were all within acceptable range to support the prediction accuracy. This study illustrates how ML methods in combination with WES data have the potential to predict severe or prolonged responses to head trauma from healthy recovery.\nKey messagesLinear association analysis has been inconclusive in concussion genetics. Non-linear methods as boosted trees can offer better insights in small samples. Strong discrimination trends can be achieved from exome data of cases and controls.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00109-021-02158-z", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7877842", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1057918", 
        "issn": [
          "0946-2716", 
          "1432-1440"
        ], 
        "name": "Journal of Molecular Medicine", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "100"
      }
    ], 
    "keywords": [
      "persistent post-concussion symptoms", 
      "persistent PCS", 
      "post-concussion symptoms", 
      "group of individuals", 
      "healthy recovery", 
      "neurological responses", 
      "discrimination trends", 
      "individual responses", 
      "individuals", 
      "minor head trauma", 
      "head trauma", 
      "trauma outcomes", 
      "trauma", 
      "learning methods", 
      "whole-exome sequencing", 
      "machine learning methods", 
      "machine learning", 
      "mTBI", 
      "small samples", 
      "prolonged response", 
      "learning", 
      "training set", 
      "severe neurological dysfunction", 
      "ML methods", 
      "head injury", 
      "neurological dysfunction", 
      "outcomes", 
      "concussion", 
      "negative prediction value", 
      "scores", 
      "normal recovery", 
      "exome sequencing", 
      "test group", 
      "symptoms", 
      "response", 
      "prediction accuracy", 
      "group", 
      "genetic variants", 
      "study", 
      "WES data", 
      "exome data", 
      "CADD scores", 
      "better insight", 
      "dysfunction", 
      "samples", 
      "data", 
      "injury", 
      "insights", 
      "recovery", 
      "accuracy", 
      "association analysis", 
      "variants", 
      "average area", 
      "kappa", 
      "control", 
      "date", 
      "XGBoost", 
      "population", 
      "set", 
      "acceptable range", 
      "percentage", 
      "use", 
      "metrics", 
      "sequencing", 
      "cases", 
      "analysis", 
      "prediction value", 
      "area", 
      "genetics", 
      "potential", 
      "method", 
      "combination", 
      "non-linear methods", 
      "curves", 
      "range", 
      "trends", 
      "signatures", 
      "genomic data", 
      "values", 
      "genomics", 
      "gradient", 
      "tree algorithm", 
      "algorithm", 
      "trees"
    ], 
    "name": "Discriminating head trauma outcomes using machine learning and genomics", 
    "pagination": "303-312", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1142692604"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00109-021-02158-z"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "34797388"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00109-021-02158-z", 
      "https://app.dimensions.ai/details/publication/pub.1142692604"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_911.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00109-021-02158-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00109-021-02158-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00109-021-02158-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00109-021-02158-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00109-021-02158-z'


 

This table displays all metadata directly associated to this object as RDF triples.

268 TRIPLES      22 PREDICATES      127 URIs      113 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00109-021-02158-z schema:about N07869852128545ea957aea4ba5dfeb30
2 N25f87f350973445dab31bfb72963b1a6
3 N4e533a2b9d25495786a4e169f8a4c173
4 N566a9f4fd4c949bfb4246544eb4dd590
5 N7fe49ef21fba4becb192793ab9d63258
6 N8ee9a2335ce54154a7df80d9fe68df8b
7 N99e66d11c20b424e879d697f4a1cdfa8
8 Nafc9a61d1516404c9adb736633220190
9 Ne978febe7afb4b2b9dfcc6845e51ae59
10 Nebcfcaa09fd24239ba3345e789fcbe7a
11 Neea1561e10f14db4a9430542efc9a181
12 anzsrc-for:03
13 anzsrc-for:0304
14 schema:author Nd93b5e7da5fe4d56a0da5c5ba3a4ca29
15 schema:citation sg:pub.10.1007/s12640-009-9044-y
16 sg:pub.10.1038/ng.608
17 sg:pub.10.1038/s41598-017-13056-1
18 sg:pub.10.1038/s41598-019-46649-z
19 sg:pub.10.1038/tp.2015.65
20 sg:pub.10.1186/s13073-019-0618-x
21 schema:datePublished 2021-11-19
22 schema:datePublishedReg 2021-11-19
23 schema:description A percentage of the population suffers prolonged and persistent post-concussion symptoms (PCS) following average head injuries or develops severe neurological dysfunction following minor head trauma. Genetic variants that may contribute to individual response to head trauma have been investigated in some studies, but to date none have explored the use of machine learning (ML) methods with genomic data to specifically explore outcomes of head trauma. Whole exome sequencing (WES) was completed for three groups of individuals (N = 60): (a) 16 individuals with severe neurological responses to minor head trauma, (b) 26 individuals with persistent PCS and (c) 18 individuals with normal recovery from concussion or mTBI. Gradient boosted tree algorithms were applied to the data using XGBoost. By using variants with CADD scores above 15 in the training set (randomly sampled 70%), we identified signatures that accurately distinguish to accurately distinguish the test groups with an average area under the curve (AUC) of 0.8 (SE = 0.019). Metrics including positive and negative prediction values, as well as kappa were all within acceptable range to support the prediction accuracy. This study illustrates how ML methods in combination with WES data have the potential to predict severe or prolonged responses to head trauma from healthy recovery. Key messagesLinear association analysis has been inconclusive in concussion genetics. Non-linear methods as boosted trees can offer better insights in small samples. Strong discrimination trends can be achieved from exome data of cases and controls.
24 schema:genre article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N421aa60d42df4d1fbb2a8bf0f2677df2
28 Nf556515659aa410d96a712f1b4ff2a8a
29 sg:journal.1057918
30 schema:keywords CADD scores
31 ML methods
32 WES data
33 XGBoost
34 acceptable range
35 accuracy
36 algorithm
37 analysis
38 area
39 association analysis
40 average area
41 better insight
42 cases
43 combination
44 concussion
45 control
46 curves
47 data
48 date
49 discrimination trends
50 dysfunction
51 exome data
52 exome sequencing
53 genetic variants
54 genetics
55 genomic data
56 genomics
57 gradient
58 group
59 group of individuals
60 head injury
61 head trauma
62 healthy recovery
63 individual responses
64 individuals
65 injury
66 insights
67 kappa
68 learning
69 learning methods
70 mTBI
71 machine learning
72 machine learning methods
73 method
74 metrics
75 minor head trauma
76 negative prediction value
77 neurological dysfunction
78 neurological responses
79 non-linear methods
80 normal recovery
81 outcomes
82 percentage
83 persistent PCS
84 persistent post-concussion symptoms
85 population
86 post-concussion symptoms
87 potential
88 prediction accuracy
89 prediction value
90 prolonged response
91 range
92 recovery
93 response
94 samples
95 scores
96 sequencing
97 set
98 severe neurological dysfunction
99 signatures
100 small samples
101 study
102 symptoms
103 test group
104 training set
105 trauma
106 trauma outcomes
107 tree algorithm
108 trees
109 trends
110 use
111 values
112 variants
113 whole-exome sequencing
114 schema:name Discriminating head trauma outcomes using machine learning and genomics
115 schema:pagination 303-312
116 schema:productId N3eb738a9ff3b40449770d27c56712dc8
117 N491eb3c4fade4a6aa640e173bfdd3eaf
118 Naf280a22a0b14213b9cc66a6affce715
119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142692604
120 https://doi.org/10.1007/s00109-021-02158-z
121 schema:sdDatePublished 2022-05-20T07:39
122 schema:sdLicense https://scigraph.springernature.com/explorer/license/
123 schema:sdPublisher Nba4d385613fb419eadcb965cc5ee7d0f
124 schema:url https://doi.org/10.1007/s00109-021-02158-z
125 sgo:license sg:explorer/license/
126 sgo:sdDataset articles
127 rdf:type schema:ScholarlyArticle
128 N07869852128545ea957aea4ba5dfeb30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Adult
130 rdf:type schema:DefinedTerm
131 N11191926073f4122aa2cb86f1b0adf5b rdf:first sg:person.01033155751.49
132 rdf:rest N263606aae79e47e2a40245ab5e603bbe
133 N25f87f350973445dab31bfb72963b1a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Craniocerebral Trauma
135 rdf:type schema:DefinedTerm
136 N263606aae79e47e2a40245ab5e603bbe rdf:first sg:person.0762233475.72
137 rdf:rest N6dc581c7a3904792b688da05fb56cdcd
138 N3eb738a9ff3b40449770d27c56712dc8 schema:name dimensions_id
139 schema:value pub.1142692604
140 rdf:type schema:PropertyValue
141 N421aa60d42df4d1fbb2a8bf0f2677df2 schema:volumeNumber 100
142 rdf:type schema:PublicationVolume
143 N491eb3c4fade4a6aa640e173bfdd3eaf schema:name doi
144 schema:value 10.1007/s00109-021-02158-z
145 rdf:type schema:PropertyValue
146 N4ae5cfcd47b94f66a7ed6ff9b721dbf0 rdf:first sg:person.0755160300.17
147 rdf:rest Nbbb056bbfb144b6eb8a5b39bb22307c3
148 N4e533a2b9d25495786a4e169f8a4c173 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Female
150 rdf:type schema:DefinedTerm
151 N50295fa99639498aa78564a555089bce rdf:first sg:person.0642646046.42
152 rdf:rest N6825ad968d0e453aa86fe6032f776820
153 N566a9f4fd4c949bfb4246544eb4dd590 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Male
155 rdf:type schema:DefinedTerm
156 N6825ad968d0e453aa86fe6032f776820 rdf:first sg:person.012075027362.12
157 rdf:rest N11191926073f4122aa2cb86f1b0adf5b
158 N6dc581c7a3904792b688da05fb56cdcd rdf:first sg:person.01130665536.98
159 rdf:rest N4ae5cfcd47b94f66a7ed6ff9b721dbf0
160 N7fe49ef21fba4becb192793ab9d63258 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Humans
162 rdf:type schema:DefinedTerm
163 N8ee9a2335ce54154a7df80d9fe68df8b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Trauma Severity Indices
165 rdf:type schema:DefinedTerm
166 N99e66d11c20b424e879d697f4a1cdfa8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Young Adult
168 rdf:type schema:DefinedTerm
169 Naf280a22a0b14213b9cc66a6affce715 schema:name pubmed_id
170 schema:value 34797388
171 rdf:type schema:PropertyValue
172 Nafc9a61d1516404c9adb736633220190 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Genomics
174 rdf:type schema:DefinedTerm
175 Nba4d385613fb419eadcb965cc5ee7d0f schema:name Springer Nature - SN SciGraph project
176 rdf:type schema:Organization
177 Nbbb056bbfb144b6eb8a5b39bb22307c3 rdf:first sg:person.01216564673.39
178 rdf:rest rdf:nil
179 Nd93b5e7da5fe4d56a0da5c5ba3a4ca29 rdf:first sg:person.012266776767.75
180 rdf:rest N50295fa99639498aa78564a555089bce
181 Ne978febe7afb4b2b9dfcc6845e51ae59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Middle Aged
183 rdf:type schema:DefinedTerm
184 Nebcfcaa09fd24239ba3345e789fcbe7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Whole Exome Sequencing
186 rdf:type schema:DefinedTerm
187 Neea1561e10f14db4a9430542efc9a181 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Machine Learning
189 rdf:type schema:DefinedTerm
190 Nf556515659aa410d96a712f1b4ff2a8a schema:issueNumber 2
191 rdf:type schema:PublicationIssue
192 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
193 schema:name Chemical Sciences
194 rdf:type schema:DefinedTerm
195 anzsrc-for:0304 schema:inDefinedTermSet anzsrc-for:
196 schema:name Medicinal and Biomolecular Chemistry
197 rdf:type schema:DefinedTerm
198 sg:grant.7877842 http://pending.schema.org/fundedItem sg:pub.10.1007/s00109-021-02158-z
199 rdf:type schema:MonetaryGrant
200 sg:journal.1057918 schema:issn 0946-2716
201 1432-1440
202 schema:name Journal of Molecular Medicine
203 schema:publisher Springer Nature
204 rdf:type schema:Periodical
205 sg:person.01033155751.49 schema:affiliation grid-institutes:grid.1003.2
206 schema:familyName Nasrallah
207 schema:givenName Fatima
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033155751.49
209 rdf:type schema:Person
210 sg:person.01130665536.98 schema:affiliation grid-institutes:grid.1024.7
211 schema:familyName Smith
212 schema:givenName Robert A.
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130665536.98
214 rdf:type schema:Person
215 sg:person.012075027362.12 schema:affiliation grid-institutes:grid.1024.7
216 schema:familyName Lea
217 schema:givenName Rodney A.
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012075027362.12
219 rdf:type schema:Person
220 sg:person.01216564673.39 schema:affiliation grid-institutes:grid.1024.7
221 schema:familyName Griffiths
222 schema:givenName Lyn R.
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216564673.39
224 rdf:type schema:Person
225 sg:person.012266776767.75 schema:affiliation grid-institutes:grid.1024.7
226 schema:familyName Ibrahim
227 schema:givenName Omar
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012266776767.75
229 rdf:type schema:Person
230 sg:person.0642646046.42 schema:affiliation grid-institutes:grid.1024.7
231 schema:familyName Sutherland
232 schema:givenName Heidi G.
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642646046.42
234 rdf:type schema:Person
235 sg:person.0755160300.17 schema:affiliation grid-institutes:grid.1024.7
236 schema:familyName Haupt
237 schema:givenName Larisa M.
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755160300.17
239 rdf:type schema:Person
240 sg:person.0762233475.72 schema:affiliation grid-institutes:grid.1024.7
241 schema:familyName Maksemous
242 schema:givenName Neven
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762233475.72
244 rdf:type schema:Person
245 sg:pub.10.1007/s12640-009-9044-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1044590250
246 https://doi.org/10.1007/s12640-009-9044-y
247 rdf:type schema:CreativeWork
248 sg:pub.10.1038/ng.608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015057090
249 https://doi.org/10.1038/ng.608
250 rdf:type schema:CreativeWork
251 sg:pub.10.1038/s41598-017-13056-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092023331
252 https://doi.org/10.1038/s41598-017-13056-1
253 rdf:type schema:CreativeWork
254 sg:pub.10.1038/s41598-019-46649-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1118044228
255 https://doi.org/10.1038/s41598-019-46649-z
256 rdf:type schema:CreativeWork
257 sg:pub.10.1038/tp.2015.65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051546512
258 https://doi.org/10.1038/tp.2015.65
259 rdf:type schema:CreativeWork
260 sg:pub.10.1186/s13073-019-0618-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1112168838
261 https://doi.org/10.1186/s13073-019-0618-x
262 rdf:type schema:CreativeWork
263 grid-institutes:grid.1003.2 schema:alternateName The Queensland Brain Institute, The University of Queensland, Brisbane, Australia
264 schema:name The Queensland Brain Institute, The University of Queensland, Brisbane, Australia
265 rdf:type schema:Organization
266 grid-institutes:grid.1024.7 schema:alternateName Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, 4059, Kelvin Grove, QLD, Australia
267 schema:name Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, 4059, Kelvin Grove, QLD, Australia
268 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...