Glycogen synthase kinase 3 alpha/beta deletion induces precocious growth plate remodeling in mice View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-02-20

AUTHORS

Supinder Kour Bali, Dawn Bryce, Carina Prein, James R. Woodgett, Frank Beier

ABSTRACT

Glycogen synthase kinase (GSK) 3 acts to negatively regulate multiple signaling pathways, including canonical Wnt signaling. The two mammalian GSK3 proteins (alpha and beta) are at least partially redundant. While Gsk3a KO mice are viable and display a metabolic phenotype, abnormal neuronal development, and accelerated aging, Gsk3b KO animals die late in embryogenesis or at birth. Selective Gsk3b KO in bone delays development of some bones, whereas cartilage-specific Gsk3b KO mice are normal except for elevated levels of GSK3A protein. However, the collective role of these two GSK3 proteins in cartilage was not evaluated. To address this, we generated tamoxifen-inducible, cartilage-specific Gsk3a/Gsk3b KO (described as “cDKO”) in juvenile mice and investigated their skeletal phenotypes. We found that cartilage-specific Gsk3a/Gsk3b deletion in young, skeletally immature mice causes precocious growth plate (GP) remodeling, culminating in shorter long bones and hence, growth retardation. These mice exhibit inefficient breathing patterns at later stages and fail to survive. The disrupted GP in cDKO mice showed progressive loss of cellular and proteoglycan components, and immunostaining for SOX9, while BGLAP (osteocalcin) and COL2A1 increased. In addition, we observed increased osteoclast recruitment and cell apoptosis. Surprisingly, changes in articular cartilage of cDKO mice were mild compared with the GP, signifying differential regulation of articular cartilage vs GP tissues. Taken together, these findings emphasize a crucial role of two GSK3 proteins in skeletal development, in particular in the maintenance and function of GP.Key Messages• Both GSK3 genes, together, are crucial regulators of growth plate remodeling.• Cartilage-specific deletion of both GSK3 genes causes skeletal growth retardation.• Deletion of both GSK3 genes decreases Sox9 levels and promotes chondrocyte apoptosis.• Cartilage-specific GSK3 deletion in juvenile mice culminates in premature lethality.• GSK3 deletion exhibits mild effects on articular cartilage compared to growth plate. More... »

PAGES

831-844

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00109-021-02049-3

DOI

http://dx.doi.org/10.1007/s00109-021-02049-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1135474076

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/33609145


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0304", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medicinal and Biomolecular Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Apoptosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cartilage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chondrocytes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Deletion", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Knockdown Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glycogen Synthase Kinase 3", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glycogen Synthase Kinase 3 beta", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Growth Plate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice, Knockout", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Osteoclasts", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Western Bone and Joint Institute, Western University, N6A 5C1, London, ON, Canada", 
          "id": "http://www.grid.ac/institutes/grid.39381.30", 
          "name": [
            "Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, N6A 5C1, London, ON, Canada", 
            "Western Bone and Joint Institute, Western University, N6A 5C1, London, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bali", 
        "givenName": "Supinder Kour", 
        "id": "sg:person.012300007252.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012300007252.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Western Bone and Joint Institute, Western University, N6A 5C1, London, ON, Canada", 
          "id": "http://www.grid.ac/institutes/grid.39381.30", 
          "name": [
            "Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, N6A 5C1, London, ON, Canada", 
            "Western Bone and Joint Institute, Western University, N6A 5C1, London, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bryce", 
        "givenName": "Dawn", 
        "id": "sg:person.01154545371.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154545371.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Western Bone and Joint Institute, Western University, N6A 5C1, London, ON, Canada", 
          "id": "http://www.grid.ac/institutes/grid.39381.30", 
          "name": [
            "Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, N6A 5C1, London, ON, Canada", 
            "Western Bone and Joint Institute, Western University, N6A 5C1, London, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prein", 
        "givenName": "Carina", 
        "id": "sg:person.01227320777.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227320777.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lunenfeld-Tanenbaum Research Institute, Sinai Health, M5G 1X5, Toronto, ON, Canada", 
          "id": "http://www.grid.ac/institutes/grid.250674.2", 
          "name": [
            "Lunenfeld-Tanenbaum Research Institute, Sinai Health, M5G 1X5, Toronto, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Woodgett", 
        "givenName": "James R.", 
        "id": "sg:person.0731233037.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731233037.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Western Bone and Joint Institute, Western University, N6A 5C1, London, ON, Canada", 
          "id": "http://www.grid.ac/institutes/grid.39381.30", 
          "name": [
            "Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, N6A 5C1, London, ON, Canada", 
            "Western Bone and Joint Institute, Western University, N6A 5C1, London, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beier", 
        "givenName": "Frank", 
        "id": "sg:person.01300070776.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300070776.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41598-017-06370-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090836318", 
          "https://doi.org/10.1038/s41598-017-06370-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1756-6606-2-35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002054835", 
          "https://doi.org/10.1186/1756-6606-2-35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-12129-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091807492", 
          "https://doi.org/10.1038/s41598-017-12129-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35017574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044051571", 
          "https://doi.org/10.1038/35017574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-21184-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100868097", 
          "https://doi.org/10.1038/s41598-018-21184-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-02-20", 
    "datePublishedReg": "2021-02-20", 
    "description": "Glycogen synthase kinase (GSK) 3 acts to negatively regulate multiple signaling pathways, including canonical Wnt signaling. The two mammalian GSK3 proteins (alpha and beta) are at least partially redundant. While Gsk3a KO mice are viable and display a metabolic phenotype, abnormal neuronal development, and accelerated aging, Gsk3b KO animals die late in embryogenesis or at birth. Selective Gsk3b KO in bone delays development of some bones, whereas cartilage-specific Gsk3b KO mice are normal except for elevated levels of GSK3A protein. However, the collective role of these two GSK3 proteins in cartilage was not evaluated. To address this, we generated tamoxifen-inducible, cartilage-specific Gsk3a/Gsk3b KO (described as \u201ccDKO\u201d) in juvenile mice and investigated their skeletal phenotypes. We found that cartilage-specific Gsk3a/Gsk3b deletion in young, skeletally immature mice causes precocious growth plate (GP) remodeling, culminating in shorter long bones and hence, growth retardation. These mice exhibit inefficient breathing patterns at later stages and fail to survive. The disrupted GP in cDKO mice showed progressive loss of cellular and proteoglycan components, and immunostaining for SOX9, while BGLAP (osteocalcin) and COL2A1 increased. In addition, we observed increased osteoclast recruitment and cell apoptosis. Surprisingly, changes in articular cartilage of cDKO mice were mild compared with the GP, signifying differential regulation of articular cartilage vs GP tissues. Taken together, these findings emphasize a crucial role of two GSK3 proteins in skeletal development, in particular in the maintenance and function of GP.Key Messages\u2022 Both GSK3 genes, together, are crucial regulators of growth plate remodeling.\u2022 Cartilage-specific deletion of both GSK3 genes causes skeletal growth retardation.\u2022 Deletion of both GSK3 genes decreases Sox9 levels and promotes chondrocyte apoptosis.\u2022 Cartilage-specific GSK3 deletion in juvenile mice culminates in premature lethality.\u2022 GSK3 deletion exhibits mild effects on articular cartilage compared to growth plate.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00109-021-02049-3", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1057918", 
        "issn": [
          "0946-2716", 
          "1432-1440"
        ], 
        "name": "Journal of Molecular Medicine", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "99"
      }
    ], 
    "keywords": [
      "GSK3 genes", 
      "growth plate remodeling", 
      "GSK3 proteins", 
      "glycogen synthase kinase-3", 
      "synthase kinase-3", 
      "cartilage-specific deletion", 
      "abnormal neuronal development", 
      "kinase 3", 
      "crucial regulator", 
      "canonical Wnt", 
      "neuronal development", 
      "differential regulation", 
      "skeletal development", 
      "premature lethality", 
      "skeletal phenotype", 
      "SOX9 levels", 
      "skeletal growth retardation", 
      "genes", 
      "protein", 
      "deletion", 
      "cell apoptosis", 
      "metabolic phenotype", 
      "cDKO mice", 
      "functions of GP", 
      "collective role", 
      "delays development", 
      "inefficient breathing pattern", 
      "growth plate", 
      "beta deletion", 
      "phenotype", 
      "apoptosis", 
      "proteoglycan component", 
      "growth retardation", 
      "GP tissues", 
      "crucial role", 
      "chondrocyte apoptosis", 
      "KO mice", 
      "KO animals", 
      "short long bones", 
      "mild effect", 
      "remodeling", 
      "later stages", 
      "embryogenesis", 
      "osteoclast recruitment", 
      "Wnt", 
      "mice", 
      "SOX9", 
      "elevated levels", 
      "regulator", 
      "articular cartilage", 
      "progressive loss", 
      "lethality", 
      "BGLAP", 
      "regulation", 
      "pathway", 
      "COL2A1", 
      "role", 
      "juvenile mice", 
      "recruitment", 
      "cartilage", 
      "KO", 
      "culminates", 
      "development", 
      "maintenance", 
      "retardation", 
      "tissue", 
      "animals", 
      "levels", 
      "long bones", 
      "immature mice", 
      "function", 
      "patterns", 
      "stage", 
      "loss", 
      "components", 
      "addition", 
      "changes", 
      "bone", 
      "findings", 
      "effect", 
      "plate", 
      "birth", 
      "GPs", 
      "breathing pattern"
    ], 
    "name": "Glycogen synthase kinase 3 alpha/beta deletion induces precocious growth plate remodeling in mice", 
    "pagination": "831-844", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1135474076"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00109-021-02049-3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "33609145"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00109-021-02049-3", 
      "https://app.dimensions.ai/details/publication/pub.1135474076"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_887.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00109-021-02049-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00109-021-02049-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00109-021-02049-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00109-021-02049-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00109-021-02049-3'


 

This table displays all metadata directly associated to this object as RDF triples.

249 TRIPLES      21 PREDICATES      127 URIs      114 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00109-021-02049-3 schema:about N1b0c783f308947ce97c8f9039269034b
2 N2bcb8d7198af41cbb1b56df4ddb654a5
3 N3efc7b32bcea4ea5a12a9a1b1f0c1bce
4 N6b8542dfe06b4a3c9a4849a3b3529c75
5 N70595f3173854a389b533bbf2cf19c37
6 N7c7a5b38fb154d37ad63a80a4e341896
7 N9e8a27dd0abb43be8af983dc75c70bbc
8 Na9a19178da35481db8fb70507d95ad17
9 Nac45467cb1dd4402bd62669ccd7b111f
10 Nc04f9bec15bd48b9942741d9729a5cd2
11 Nc448e64c142349119eb823780801f8e4
12 Nd1b80ed87b7748a3aa711322562ebea6
13 Nf4d50931a94c4d95a62f9a6c5401b4c1
14 anzsrc-for:03
15 anzsrc-for:0304
16 schema:author N3e47b84e2b3f4accbcfbc1aadabecfb2
17 schema:citation sg:pub.10.1038/35017574
18 sg:pub.10.1038/s41598-017-06370-1
19 sg:pub.10.1038/s41598-017-12129-5
20 sg:pub.10.1038/s41598-018-21184-5
21 sg:pub.10.1186/1756-6606-2-35
22 schema:datePublished 2021-02-20
23 schema:datePublishedReg 2021-02-20
24 schema:description Glycogen synthase kinase (GSK) 3 acts to negatively regulate multiple signaling pathways, including canonical Wnt signaling. The two mammalian GSK3 proteins (alpha and beta) are at least partially redundant. While Gsk3a KO mice are viable and display a metabolic phenotype, abnormal neuronal development, and accelerated aging, Gsk3b KO animals die late in embryogenesis or at birth. Selective Gsk3b KO in bone delays development of some bones, whereas cartilage-specific Gsk3b KO mice are normal except for elevated levels of GSK3A protein. However, the collective role of these two GSK3 proteins in cartilage was not evaluated. To address this, we generated tamoxifen-inducible, cartilage-specific Gsk3a/Gsk3b KO (described as “cDKO”) in juvenile mice and investigated their skeletal phenotypes. We found that cartilage-specific Gsk3a/Gsk3b deletion in young, skeletally immature mice causes precocious growth plate (GP) remodeling, culminating in shorter long bones and hence, growth retardation. These mice exhibit inefficient breathing patterns at later stages and fail to survive. The disrupted GP in cDKO mice showed progressive loss of cellular and proteoglycan components, and immunostaining for SOX9, while BGLAP (osteocalcin) and COL2A1 increased. In addition, we observed increased osteoclast recruitment and cell apoptosis. Surprisingly, changes in articular cartilage of cDKO mice were mild compared with the GP, signifying differential regulation of articular cartilage vs GP tissues. Taken together, these findings emphasize a crucial role of two GSK3 proteins in skeletal development, in particular in the maintenance and function of GP.Key Messages• Both GSK3 genes, together, are crucial regulators of growth plate remodeling.• Cartilage-specific deletion of both GSK3 genes causes skeletal growth retardation.• Deletion of both GSK3 genes decreases Sox9 levels and promotes chondrocyte apoptosis.• Cartilage-specific GSK3 deletion in juvenile mice culminates in premature lethality.• GSK3 deletion exhibits mild effects on articular cartilage compared to growth plate.
25 schema:genre article
26 schema:isAccessibleForFree true
27 schema:isPartOf N1776c00245d644b3bc805813397c3aac
28 N2a43cf4cbed643ed9fb0ba87c5e7843c
29 sg:journal.1057918
30 schema:keywords BGLAP
31 COL2A1
32 GP tissues
33 GPs
34 GSK3 genes
35 GSK3 proteins
36 KO
37 KO animals
38 KO mice
39 SOX9
40 SOX9 levels
41 Wnt
42 abnormal neuronal development
43 addition
44 animals
45 apoptosis
46 articular cartilage
47 beta deletion
48 birth
49 bone
50 breathing pattern
51 cDKO mice
52 canonical Wnt
53 cartilage
54 cartilage-specific deletion
55 cell apoptosis
56 changes
57 chondrocyte apoptosis
58 collective role
59 components
60 crucial regulator
61 crucial role
62 culminates
63 delays development
64 deletion
65 development
66 differential regulation
67 effect
68 elevated levels
69 embryogenesis
70 findings
71 function
72 functions of GP
73 genes
74 glycogen synthase kinase-3
75 growth plate
76 growth plate remodeling
77 growth retardation
78 immature mice
79 inefficient breathing pattern
80 juvenile mice
81 kinase 3
82 later stages
83 lethality
84 levels
85 long bones
86 loss
87 maintenance
88 metabolic phenotype
89 mice
90 mild effect
91 neuronal development
92 osteoclast recruitment
93 pathway
94 patterns
95 phenotype
96 plate
97 premature lethality
98 progressive loss
99 protein
100 proteoglycan component
101 recruitment
102 regulation
103 regulator
104 remodeling
105 retardation
106 role
107 short long bones
108 skeletal development
109 skeletal growth retardation
110 skeletal phenotype
111 stage
112 synthase kinase-3
113 tissue
114 schema:name Glycogen synthase kinase 3 alpha/beta deletion induces precocious growth plate remodeling in mice
115 schema:pagination 831-844
116 schema:productId N0b0622c356dd4e879a2ed15e420ad8cc
117 N56eadf4f2b234dc3af12c772e630528c
118 N5c3556652f174e2791fb3fb258243b7f
119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135474076
120 https://doi.org/10.1007/s00109-021-02049-3
121 schema:sdDatePublished 2022-09-02T16:06
122 schema:sdLicense https://scigraph.springernature.com/explorer/license/
123 schema:sdPublisher N8d2164fa41d6447fb645ee44bb20b9e1
124 schema:url https://doi.org/10.1007/s00109-021-02049-3
125 sgo:license sg:explorer/license/
126 sgo:sdDataset articles
127 rdf:type schema:ScholarlyArticle
128 N0163801bd0754e67ab4f2d244e448433 rdf:first sg:person.01227320777.71
129 rdf:rest Nce712e2de3e647e5a0e27c7f01fe88da
130 N033fd79fee26403d9417787bde11c00f rdf:first sg:person.01300070776.32
131 rdf:rest rdf:nil
132 N0b0622c356dd4e879a2ed15e420ad8cc schema:name doi
133 schema:value 10.1007/s00109-021-02049-3
134 rdf:type schema:PropertyValue
135 N1776c00245d644b3bc805813397c3aac schema:volumeNumber 99
136 rdf:type schema:PublicationVolume
137 N1b0c783f308947ce97c8f9039269034b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Animals
139 rdf:type schema:DefinedTerm
140 N2a43cf4cbed643ed9fb0ba87c5e7843c schema:issueNumber 6
141 rdf:type schema:PublicationIssue
142 N2bcb8d7198af41cbb1b56df4ddb654a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Biomarkers
144 rdf:type schema:DefinedTerm
145 N3e47b84e2b3f4accbcfbc1aadabecfb2 rdf:first sg:person.012300007252.47
146 rdf:rest N903aaef8bc3340de882d984d6b698b4f
147 N3efc7b32bcea4ea5a12a9a1b1f0c1bce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Cartilage
149 rdf:type schema:DefinedTerm
150 N56eadf4f2b234dc3af12c772e630528c schema:name pubmed_id
151 schema:value 33609145
152 rdf:type schema:PropertyValue
153 N5c3556652f174e2791fb3fb258243b7f schema:name dimensions_id
154 schema:value pub.1135474076
155 rdf:type schema:PropertyValue
156 N6b8542dfe06b4a3c9a4849a3b3529c75 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Chondrocytes
158 rdf:type schema:DefinedTerm
159 N70595f3173854a389b533bbf2cf19c37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Gene Deletion
161 rdf:type schema:DefinedTerm
162 N7c7a5b38fb154d37ad63a80a4e341896 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Mice, Knockout
164 rdf:type schema:DefinedTerm
165 N8d2164fa41d6447fb645ee44bb20b9e1 schema:name Springer Nature - SN SciGraph project
166 rdf:type schema:Organization
167 N903aaef8bc3340de882d984d6b698b4f rdf:first sg:person.01154545371.89
168 rdf:rest N0163801bd0754e67ab4f2d244e448433
169 N9e8a27dd0abb43be8af983dc75c70bbc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Glycogen Synthase Kinase 3
171 rdf:type schema:DefinedTerm
172 Na9a19178da35481db8fb70507d95ad17 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Glycogen Synthase Kinase 3 beta
174 rdf:type schema:DefinedTerm
175 Nac45467cb1dd4402bd62669ccd7b111f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Mice
177 rdf:type schema:DefinedTerm
178 Nc04f9bec15bd48b9942741d9729a5cd2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Osteoclasts
180 rdf:type schema:DefinedTerm
181 Nc448e64c142349119eb823780801f8e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Gene Knockdown Techniques
183 rdf:type schema:DefinedTerm
184 Nce712e2de3e647e5a0e27c7f01fe88da rdf:first sg:person.0731233037.88
185 rdf:rest N033fd79fee26403d9417787bde11c00f
186 Nd1b80ed87b7748a3aa711322562ebea6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Apoptosis
188 rdf:type schema:DefinedTerm
189 Nf4d50931a94c4d95a62f9a6c5401b4c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Growth Plate
191 rdf:type schema:DefinedTerm
192 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
193 schema:name Chemical Sciences
194 rdf:type schema:DefinedTerm
195 anzsrc-for:0304 schema:inDefinedTermSet anzsrc-for:
196 schema:name Medicinal and Biomolecular Chemistry
197 rdf:type schema:DefinedTerm
198 sg:journal.1057918 schema:issn 0946-2716
199 1432-1440
200 schema:name Journal of Molecular Medicine
201 schema:publisher Springer Nature
202 rdf:type schema:Periodical
203 sg:person.01154545371.89 schema:affiliation grid-institutes:grid.39381.30
204 schema:familyName Bryce
205 schema:givenName Dawn
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154545371.89
207 rdf:type schema:Person
208 sg:person.01227320777.71 schema:affiliation grid-institutes:grid.39381.30
209 schema:familyName Prein
210 schema:givenName Carina
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227320777.71
212 rdf:type schema:Person
213 sg:person.012300007252.47 schema:affiliation grid-institutes:grid.39381.30
214 schema:familyName Bali
215 schema:givenName Supinder Kour
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012300007252.47
217 rdf:type schema:Person
218 sg:person.01300070776.32 schema:affiliation grid-institutes:grid.39381.30
219 schema:familyName Beier
220 schema:givenName Frank
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300070776.32
222 rdf:type schema:Person
223 sg:person.0731233037.88 schema:affiliation grid-institutes:grid.250674.2
224 schema:familyName Woodgett
225 schema:givenName James R.
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731233037.88
227 rdf:type schema:Person
228 sg:pub.10.1038/35017574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044051571
229 https://doi.org/10.1038/35017574
230 rdf:type schema:CreativeWork
231 sg:pub.10.1038/s41598-017-06370-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090836318
232 https://doi.org/10.1038/s41598-017-06370-1
233 rdf:type schema:CreativeWork
234 sg:pub.10.1038/s41598-017-12129-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091807492
235 https://doi.org/10.1038/s41598-017-12129-5
236 rdf:type schema:CreativeWork
237 sg:pub.10.1038/s41598-018-21184-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100868097
238 https://doi.org/10.1038/s41598-018-21184-5
239 rdf:type schema:CreativeWork
240 sg:pub.10.1186/1756-6606-2-35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002054835
241 https://doi.org/10.1186/1756-6606-2-35
242 rdf:type schema:CreativeWork
243 grid-institutes:grid.250674.2 schema:alternateName Lunenfeld-Tanenbaum Research Institute, Sinai Health, M5G 1X5, Toronto, ON, Canada
244 schema:name Lunenfeld-Tanenbaum Research Institute, Sinai Health, M5G 1X5, Toronto, ON, Canada
245 rdf:type schema:Organization
246 grid-institutes:grid.39381.30 schema:alternateName Western Bone and Joint Institute, Western University, N6A 5C1, London, ON, Canada
247 schema:name Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, N6A 5C1, London, ON, Canada
248 Western Bone and Joint Institute, Western University, N6A 5C1, London, ON, Canada
249 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...