Quantitative real-time RT-PCR data analysis: current concepts and the novel “gene expression’s CT difference” formula View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-11

AUTHORS

Jan H. Schefe, Kerstin E. Lehmann, Ivo R. Buschmann, Thomas Unger, Heiko Funke-Kaiser

ABSTRACT

For quantification of gene-specific mRNA, quantitative real-time RT-PCR has become one of the most frequently used methods over the last few years. This article focuses on the issue of real-time PCR data analysis and its mathematical background, offering a general concept for efficient, fast and precise data analysis superior to the commonly used comparative CT (DeltaDeltaCT) and the standard curve method, as it considers individual amplification efficiencies for every PCR. This concept is based on a novel formula for the calculation of relative gene expression ratios, termed GED (Gene Expression's CT Difference) formula. Prerequisites for this formula, such as real-time PCR kinetics, the concept of PCR efficiency and its determination, are discussed. Additionally, this article offers some technical considerations and information on statistical analysis of real-time PCR data. More... »

PAGES

901-910

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00109-006-0097-6

DOI

http://dx.doi.org/10.1007/s00109-006-0097-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009582310

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16972087


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorescent Dyes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kinetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Organic Chemicals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Messenger", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reverse Transcriptase Polymerase Chain Reaction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Taq Polymerase", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Charit\u00e9", 
          "id": "https://www.grid.ac/institutes/grid.6363.0", 
          "name": [
            "Center for Cardiovascular Research (CCR)/Institute of Pharmacology and Toxicology, Charit\u00e9-Universit\u00e4tsmedizin Berlin, Hessische Strasse 3-4, 10115, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schefe", 
        "givenName": "Jan H.", 
        "id": "sg:person.0641430461.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641430461.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Center for Cardiovascular Research (CCR), Department of Cardiology, Experimental and Clinical Arteriogenesis, Charit\u00e9, Universit\u00e4tsmedizin Berlin, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lehmann", 
        "givenName": "Kerstin E.", 
        "id": "sg:person.0611675107.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611675107.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Center for Cardiovascular Research (CCR), Department of Cardiology, Experimental and Clinical Arteriogenesis, Charit\u00e9, Universit\u00e4tsmedizin Berlin, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Buschmann", 
        "givenName": "Ivo R.", 
        "id": "sg:person.0621117446.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621117446.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Charit\u00e9", 
          "id": "https://www.grid.ac/institutes/grid.6363.0", 
          "name": [
            "Center for Cardiovascular Research (CCR)/Institute of Pharmacology and Toxicology, Charit\u00e9-Universit\u00e4tsmedizin Berlin, Hessische Strasse 3-4, 10115, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Unger", 
        "givenName": "Thomas", 
        "id": "sg:person.0752125516.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752125516.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Charit\u00e9", 
          "id": "https://www.grid.ac/institutes/grid.6363.0", 
          "name": [
            "Center for Cardiovascular Research (CCR)/Institute of Pharmacology and Toxicology, Charit\u00e9-Universit\u00e4tsmedizin Berlin, Hessische Strasse 3-4, 10115, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Funke-Kaiser", 
        "givenName": "Heiko", 
        "id": "sg:person.01053316172.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053316172.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nbt0492-413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000839371", 
          "https://doi.org/10.1038/nbt0492-413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1677/jme.0.0290023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001475339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5483/bmbrep.2004.37.1.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002101499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cbic.200300662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003478565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1021319421153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005390688", 
          "https://doi.org/10.1023/a:1021319421153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3940(02)01423-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009175625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3940(02)01423-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009175625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1677/joe.0.1590197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010082875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1677/joe.0.1590197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010082875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.6.10.986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018725591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/abio.2001.5530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018776800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gni176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019593451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1373/49.1.51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025280249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/meth.2001.1262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027621591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/meth.2001.1262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027621591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/29.9.e45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030834024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gng122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031852387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mcp.2003.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038028481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2002-3-7-research0034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039751959", 
          "https://doi.org/10.1186/gb-2002-3-7-research0034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcv.2005.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039883003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gng106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041075236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-291x(02)00478-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042988538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gng073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044637981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0993-1026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045863719", 
          "https://doi.org/10.1038/nbt0993-1026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.mi.03.100149.002103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047102495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/21.3.577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047677275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/17.22.9437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051729928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00497a009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055178289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/05382rr05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069097011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/05391rv01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069097130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076883946", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/97221bi01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083030934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083278915", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/99261rv01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083377024"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-11", 
    "datePublishedReg": "2006-11-01", 
    "description": "For quantification of gene-specific mRNA, quantitative real-time RT-PCR has become one of the most frequently used methods over the last few years. This article focuses on the issue of real-time PCR data analysis and its mathematical background, offering a general concept for efficient, fast and precise data analysis superior to the commonly used comparative CT (DeltaDeltaCT) and the standard curve method, as it considers individual amplification efficiencies for every PCR. This concept is based on a novel formula for the calculation of relative gene expression ratios, termed GED (Gene Expression's CT Difference) formula. Prerequisites for this formula, such as real-time PCR kinetics, the concept of PCR efficiency and its determination, are discussed. Additionally, this article offers some technical considerations and information on statistical analysis of real-time PCR data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00109-006-0097-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1057918", 
        "issn": [
          "0946-2716", 
          "1432-1440"
        ], 
        "name": "Journal of Molecular Medicine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "84"
      }
    ], 
    "name": "Quantitative real-time RT-PCR data analysis: current concepts and the novel \u201cgene expression\u2019s CT difference\u201d formula", 
    "pagination": "901-910", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2da5b02e7ffb018111d397c32610a6908b4205831037ec4a94112f370234c524"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16972087"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9504370"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00109-006-0097-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009582310"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00109-006-0097-6", 
      "https://app.dimensions.ai/details/publication/pub.1009582310"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13099_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00109-006-0097-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00109-006-0097-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00109-006-0097-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00109-006-0097-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00109-006-0097-6'


 

This table displays all metadata directly associated to this object as RDF triples.

244 TRIPLES      21 PREDICATES      72 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00109-006-0097-6 schema:about N06d84b41eff24588b74b824a62a3d365
2 N0ad4ca983a544b91b302293c73bc08f3
3 N1b186e818a7b408dbd1f6a2abefb6326
4 N1e9ca45b8d8b41238280967cfd74129b
5 N2911fc0a0ec2452f847b8d6939c1ca5b
6 N5ff8d3bfac0641828e605951d7984be6
7 N6072321d28614f2da2900fd9800b7a32
8 N76ae874b56bd49e9817a49fcac500398
9 N7bc5d807f69f4337978863897b9f9de2
10 Nc5c6ddaacb9e478893d91efc395890e9
11 Ndfd2d9fb1e564d9fbe2264f98b0182a4
12 Nf9d9716e2c9e4f3cb6e4ad1b800eb252
13 anzsrc-for:01
14 anzsrc-for:0104
15 schema:author N95fb811d999e4782b6c2d4470c2dd62d
16 schema:citation sg:pub.10.1023/a:1021319421153
17 sg:pub.10.1038/nbt0492-413
18 sg:pub.10.1038/nbt0993-1026
19 sg:pub.10.1186/gb-2002-3-7-research0034
20 https://app.dimensions.ai/details/publication/pub.1076883946
21 https://app.dimensions.ai/details/publication/pub.1083278915
22 https://doi.org/10.1002/cbic.200300662
23 https://doi.org/10.1006/abio.2001.5530
24 https://doi.org/10.1006/meth.2001.1262
25 https://doi.org/10.1016/j.jcv.2005.02.015
26 https://doi.org/10.1016/j.mcp.2003.09.001
27 https://doi.org/10.1016/s0006-291x(02)00478-3
28 https://doi.org/10.1016/s0304-3940(02)01423-4
29 https://doi.org/10.1021/bi00497a009
30 https://doi.org/10.1093/nar/17.22.9437
31 https://doi.org/10.1093/nar/21.3.577
32 https://doi.org/10.1093/nar/29.9.e45
33 https://doi.org/10.1093/nar/gng073
34 https://doi.org/10.1093/nar/gng106
35 https://doi.org/10.1093/nar/gng122
36 https://doi.org/10.1093/nar/gni176
37 https://doi.org/10.1101/gr.6.10.986
38 https://doi.org/10.1146/annurev.mi.03.100149.002103
39 https://doi.org/10.1373/49.1.51
40 https://doi.org/10.1677/jme.0.0290023
41 https://doi.org/10.1677/joe.0.1590197
42 https://doi.org/10.2144/05382rr05
43 https://doi.org/10.2144/05391rv01
44 https://doi.org/10.2144/97221bi01
45 https://doi.org/10.2144/99261rv01
46 https://doi.org/10.5483/bmbrep.2004.37.1.001
47 schema:datePublished 2006-11
48 schema:datePublishedReg 2006-11-01
49 schema:description For quantification of gene-specific mRNA, quantitative real-time RT-PCR has become one of the most frequently used methods over the last few years. This article focuses on the issue of real-time PCR data analysis and its mathematical background, offering a general concept for efficient, fast and precise data analysis superior to the commonly used comparative CT (DeltaDeltaCT) and the standard curve method, as it considers individual amplification efficiencies for every PCR. This concept is based on a novel formula for the calculation of relative gene expression ratios, termed GED (Gene Expression's CT Difference) formula. Prerequisites for this formula, such as real-time PCR kinetics, the concept of PCR efficiency and its determination, are discussed. Additionally, this article offers some technical considerations and information on statistical analysis of real-time PCR data.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree false
53 schema:isPartOf N44791fcb1ee4467487291d4199a367bb
54 N8be1bfca70644609860517460e219ce5
55 sg:journal.1057918
56 schema:name Quantitative real-time RT-PCR data analysis: current concepts and the novel “gene expression’s CT difference” formula
57 schema:pagination 901-910
58 schema:productId N279a13bfe84342f28f0a622b9213f1dc
59 N3464e5e561544422ace7d7e3e5fac371
60 N823a3a3c94b249a99a64ecbb8aa3e814
61 Naca29617eeff40668c561d2b0de198ba
62 Nc91a61f501ac499797bbca3c92307ba7
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009582310
64 https://doi.org/10.1007/s00109-006-0097-6
65 schema:sdDatePublished 2019-04-11T14:31
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N03ebf1703edc4a9d8859a96348739a54
68 schema:url http://link.springer.com/10.1007%2Fs00109-006-0097-6
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N03ebf1703edc4a9d8859a96348739a54 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N06d84b41eff24588b74b824a62a3d365 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Humans
76 rdf:type schema:DefinedTerm
77 N0ad4ca983a544b91b302293c73bc08f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Data Interpretation, Statistical
79 rdf:type schema:DefinedTerm
80 N0b6b257bbb7d4d19bb61d54064d768e0 schema:name Center for Cardiovascular Research (CCR), Department of Cardiology, Experimental and Clinical Arteriogenesis, Charité, Universitätsmedizin Berlin, Berlin, Germany
81 rdf:type schema:Organization
82 N1b186e818a7b408dbd1f6a2abefb6326 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Kinetics
84 rdf:type schema:DefinedTerm
85 N1dbfdbd73f074436b89ec66757a6da88 rdf:first sg:person.01053316172.38
86 rdf:rest rdf:nil
87 N1e9ca45b8d8b41238280967cfd74129b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Models, Genetic
89 rdf:type schema:DefinedTerm
90 N279a13bfe84342f28f0a622b9213f1dc schema:name doi
91 schema:value 10.1007/s00109-006-0097-6
92 rdf:type schema:PropertyValue
93 N2911fc0a0ec2452f847b8d6939c1ca5b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Reverse Transcriptase Polymerase Chain Reaction
95 rdf:type schema:DefinedTerm
96 N3464e5e561544422ace7d7e3e5fac371 schema:name readcube_id
97 schema:value 2da5b02e7ffb018111d397c32610a6908b4205831037ec4a94112f370234c524
98 rdf:type schema:PropertyValue
99 N44791fcb1ee4467487291d4199a367bb schema:issueNumber 11
100 rdf:type schema:PublicationIssue
101 N556c45a8d3bf437c90c79ec0da6e2126 rdf:first sg:person.0621117446.06
102 rdf:rest N6a65494189c848c2bbe155c65945b432
103 N5ff8d3bfac0641828e605951d7984be6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Fluorescent Dyes
105 rdf:type schema:DefinedTerm
106 N6072321d28614f2da2900fd9800b7a32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Gene Expression
108 rdf:type schema:DefinedTerm
109 N6a65494189c848c2bbe155c65945b432 rdf:first sg:person.0752125516.35
110 rdf:rest N1dbfdbd73f074436b89ec66757a6da88
111 N76ae874b56bd49e9817a49fcac500398 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Taq Polymerase
113 rdf:type schema:DefinedTerm
114 N7bc5d807f69f4337978863897b9f9de2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Time Factors
116 rdf:type schema:DefinedTerm
117 N823a3a3c94b249a99a64ecbb8aa3e814 schema:name nlm_unique_id
118 schema:value 9504370
119 rdf:type schema:PropertyValue
120 N8404a0f7cc5b42adad21f162435bb5c7 schema:name Center for Cardiovascular Research (CCR), Department of Cardiology, Experimental and Clinical Arteriogenesis, Charité, Universitätsmedizin Berlin, Berlin, Germany
121 rdf:type schema:Organization
122 N8be1bfca70644609860517460e219ce5 schema:volumeNumber 84
123 rdf:type schema:PublicationVolume
124 N95fb811d999e4782b6c2d4470c2dd62d rdf:first sg:person.0641430461.60
125 rdf:rest N999ca5c5ab9b4ddd9476d0bacb51571e
126 N999ca5c5ab9b4ddd9476d0bacb51571e rdf:first sg:person.0611675107.94
127 rdf:rest N556c45a8d3bf437c90c79ec0da6e2126
128 Naca29617eeff40668c561d2b0de198ba schema:name pubmed_id
129 schema:value 16972087
130 rdf:type schema:PropertyValue
131 Nc5c6ddaacb9e478893d91efc395890e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name RNA, Messenger
133 rdf:type schema:DefinedTerm
134 Nc91a61f501ac499797bbca3c92307ba7 schema:name dimensions_id
135 schema:value pub.1009582310
136 rdf:type schema:PropertyValue
137 Ndfd2d9fb1e564d9fbe2264f98b0182a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Models, Statistical
139 rdf:type schema:DefinedTerm
140 Nf9d9716e2c9e4f3cb6e4ad1b800eb252 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Organic Chemicals
142 rdf:type schema:DefinedTerm
143 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
144 schema:name Mathematical Sciences
145 rdf:type schema:DefinedTerm
146 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
147 schema:name Statistics
148 rdf:type schema:DefinedTerm
149 sg:journal.1057918 schema:issn 0946-2716
150 1432-1440
151 schema:name Journal of Molecular Medicine
152 rdf:type schema:Periodical
153 sg:person.01053316172.38 schema:affiliation https://www.grid.ac/institutes/grid.6363.0
154 schema:familyName Funke-Kaiser
155 schema:givenName Heiko
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053316172.38
157 rdf:type schema:Person
158 sg:person.0611675107.94 schema:affiliation N8404a0f7cc5b42adad21f162435bb5c7
159 schema:familyName Lehmann
160 schema:givenName Kerstin E.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611675107.94
162 rdf:type schema:Person
163 sg:person.0621117446.06 schema:affiliation N0b6b257bbb7d4d19bb61d54064d768e0
164 schema:familyName Buschmann
165 schema:givenName Ivo R.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621117446.06
167 rdf:type schema:Person
168 sg:person.0641430461.60 schema:affiliation https://www.grid.ac/institutes/grid.6363.0
169 schema:familyName Schefe
170 schema:givenName Jan H.
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641430461.60
172 rdf:type schema:Person
173 sg:person.0752125516.35 schema:affiliation https://www.grid.ac/institutes/grid.6363.0
174 schema:familyName Unger
175 schema:givenName Thomas
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752125516.35
177 rdf:type schema:Person
178 sg:pub.10.1023/a:1021319421153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005390688
179 https://doi.org/10.1023/a:1021319421153
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/nbt0492-413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000839371
182 https://doi.org/10.1038/nbt0492-413
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nbt0993-1026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045863719
185 https://doi.org/10.1038/nbt0993-1026
186 rdf:type schema:CreativeWork
187 sg:pub.10.1186/gb-2002-3-7-research0034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039751959
188 https://doi.org/10.1186/gb-2002-3-7-research0034
189 rdf:type schema:CreativeWork
190 https://app.dimensions.ai/details/publication/pub.1076883946 schema:CreativeWork
191 https://app.dimensions.ai/details/publication/pub.1083278915 schema:CreativeWork
192 https://doi.org/10.1002/cbic.200300662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003478565
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1006/abio.2001.5530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018776800
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1006/meth.2001.1262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027621591
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.jcv.2005.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039883003
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.mcp.2003.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038028481
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/s0006-291x(02)00478-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042988538
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/s0304-3940(02)01423-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009175625
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1021/bi00497a009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055178289
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1093/nar/17.22.9437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051729928
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1093/nar/21.3.577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047677275
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1093/nar/29.9.e45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030834024
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1093/nar/gng073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044637981
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1093/nar/gng106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041075236
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1093/nar/gng122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031852387
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1093/nar/gni176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019593451
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1101/gr.6.10.986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018725591
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1146/annurev.mi.03.100149.002103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047102495
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1373/49.1.51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025280249
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1677/jme.0.0290023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001475339
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1677/joe.0.1590197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010082875
231 rdf:type schema:CreativeWork
232 https://doi.org/10.2144/05382rr05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069097011
233 rdf:type schema:CreativeWork
234 https://doi.org/10.2144/05391rv01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069097130
235 rdf:type schema:CreativeWork
236 https://doi.org/10.2144/97221bi01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083030934
237 rdf:type schema:CreativeWork
238 https://doi.org/10.2144/99261rv01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083377024
239 rdf:type schema:CreativeWork
240 https://doi.org/10.5483/bmbrep.2004.37.1.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002101499
241 rdf:type schema:CreativeWork
242 https://www.grid.ac/institutes/grid.6363.0 schema:alternateName Charité
243 schema:name Center for Cardiovascular Research (CCR)/Institute of Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Hessische Strasse 3-4, 10115, Berlin, Germany
244 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...