The GT to GC single nucleotide polymorphism at the beginning of an alternative exon 2C of human MTH1 gene confers ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-04-11

AUTHORS

Yasunari Sakai, Hisanobu Oda, Daisuke Yoshimura, Masato Furuichi, Dongchon Kang, Shigenori Iwai, Toshiro Hara, Yusaku Nakabeppu

ABSTRACT

Human MTH1 protein hydrolyzes oxidized purine nucleotides 8-oxo-2′-deoxyguanosine triphosphate (8-oxo-dGTP), 2-OH-dATP or their ribo-forms to their monophosphates, thus minimizing replicational and transcriptional errors both in the nuclei and mitochondria. MTH1 suppresses mitochondrial dysfunction and cell death caused by H2O2. Furthermore, MTH1 suppresses the transient increase in 8-oxoguanine in mitochondrial DNA in the dopaminergic nerve terminals in mouse striatum after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration, and it protects the nerve terminals. We previously reported that a novel MTH1 allele with a single nucleotide polymorphism (SNP) in its exon 2c segment encodes the fourth MTH1 isoform, namely, MTH1a (p26), in addition to the three known isoforms, MTH1b (p22), c (p21), and d (p18). Another SNP located in exon 4 of the MTH1 gene, which is closely linked to the SNP in exon 2c, substitutes the Val83 residue in MTH1d with Met83. We herein show that all MTH1 isoforms efficiently hydrolyzed 2-OH-dATP and 8-oxo-dGTP. The amino terminal region of MTH1a functioned as a mitochondrial targeting signal when it was expressed in the HeLa cells as a fusion protein with enhanced green fluorescent protein. The cellular fractionation revealed that MTH1a(Met83) was localized in the mitochondria to the same extent as was MTH1d(Val83). However, the mitochondrial translocation of MTH1d(Met83) was less efficient than that of MTH1d(Val83). More... »

PAGES

660-670

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00109-006-0053-5

DOI

http://dx.doi.org/10.1007/s00109-006-0053-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044218921

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16607562


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0304", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medicinal and Biomolecular Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adenosine Triphosphate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alternative Splicing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Motifs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Repair Enzymes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Exons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrolysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Isoenzymes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mitochondria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phosphoric Monoester Hydrolases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Sorting Signals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Transport", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Recombinant Fusion Proteins", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 812-8582, Fukuoka, Japan", 
            "Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sakai", 
        "givenName": "Yasunari", 
        "id": "sg:person.01250623430.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250623430.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 08854, Piscataway, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.430387.b", 
          "name": [
            "Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 812-8582, Fukuoka, Japan", 
            "Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 08854, Piscataway, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oda", 
        "givenName": "Hisanobu", 
        "id": "sg:person.0612577114.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612577114.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 812-8582, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 812-8582, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoshimura", 
        "givenName": "Daisuke", 
        "id": "sg:person.01051453135.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051453135.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 812-8582, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 812-8582, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Furuichi", 
        "givenName": "Masato", 
        "id": "sg:person.01257760056.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257760056.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Dongchon", 
        "id": "sg:person.010326533627.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010326533627.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Chemistry, Graduate School of Engineering Science, Osaka University, 560-8531, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Division of Chemistry, Graduate School of Engineering Science, Osaka University, 560-8531, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iwai", 
        "givenName": "Shigenori", 
        "id": "sg:person.0727600052.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727600052.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hara", 
        "givenName": "Toshiro", 
        "id": "sg:person.01263076224.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263076224.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 812-8582, Fukuoka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 812-8582, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakabeppu", 
        "givenName": "Yusaku", 
        "id": "sg:person.01057206274.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057206274.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/355273a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021905091", 
          "https://doi.org/10.1038/355273a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.cdd.4401788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033331524", 
          "https://doi.org/10.1038/sj.cdd.4401788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00401-001-0480-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028765071", 
          "https://doi.org/10.1007/s00401-001-0480-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007058602594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002491879", 
          "https://doi.org/10.1023/a:1007058602594"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-04-11", 
    "datePublishedReg": "2006-04-11", 
    "description": "Human MTH1 protein hydrolyzes oxidized purine nucleotides 8-oxo-2\u2032-deoxyguanosine triphosphate (8-oxo-dGTP), 2-OH-dATP or their ribo-forms to their monophosphates, thus minimizing replicational and transcriptional errors both in the nuclei and mitochondria. MTH1 suppresses mitochondrial dysfunction and cell death caused by H2O2. Furthermore, MTH1 suppresses the transient increase in 8-oxoguanine in mitochondrial DNA in the dopaminergic nerve terminals in mouse striatum after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration, and it protects the nerve terminals. We previously reported that a novel MTH1 allele with a single nucleotide polymorphism (SNP) in its exon 2c segment encodes the fourth MTH1 isoform, namely, MTH1a (p26), in addition to the three known isoforms, MTH1b (p22), c (p21), and d (p18). Another SNP located in exon 4 of the MTH1 gene, which is closely linked to the SNP in exon 2c, substitutes the Val83 residue in MTH1d with Met83. We herein show that all MTH1 isoforms efficiently hydrolyzed 2-OH-dATP and 8-oxo-dGTP. The amino terminal region of MTH1a functioned as a mitochondrial targeting signal when it was expressed in the HeLa cells as a fusion protein with enhanced green fluorescent protein. The cellular fractionation revealed that MTH1a(Met83) was localized in the mitochondria to the same extent as was MTH1d(Val83). However, the mitochondrial translocation of MTH1d(Met83) was less efficient than that of MTH1d(Val83).", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00109-006-0053-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1057918", 
        "issn": [
          "0946-2716", 
          "1432-1440"
        ], 
        "name": "Journal of Molecular Medicine", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "84"
      }
    ], 
    "keywords": [
      "single nucleotide polymorphisms", 
      "MTH1 gene", 
      "amino-terminal extension", 
      "nucleotide polymorphisms", 
      "amino-terminal region", 
      "enhanced green fluorescent protein", 
      "human MTH1 gene", 
      "green fluorescent protein", 
      "cellular fractionation", 
      "mitochondrial DNA", 
      "mitochondrial translocation", 
      "terminal extension", 
      "terminal region", 
      "fusion protein", 
      "fluorescent protein", 
      "cell death", 
      "mitochondrial dysfunction", 
      "HeLa cells", 
      "transcriptional errors", 
      "purine nucleotides", 
      "isoforms", 
      "exon 4", 
      "MTH1", 
      "genes", 
      "mitochondria", 
      "protein", 
      "dATP", 
      "polymorphism", 
      "nerve terminals", 
      "Met83", 
      "nucleotides", 
      "DNA", 
      "translocation", 
      "same extent", 
      "residues", 
      "alleles", 
      "transient increase", 
      "dGTP", 
      "hydrolyzes", 
      "mouse striatum", 
      "triphosphate", 
      "cells", 
      "monophosphate", 
      "terminals", 
      "nucleus", 
      "signals", 
      "H2O2", 
      "fractionation", 
      "region", 
      "function", 
      "GC single nucleotide polymorphisms", 
      "death", 
      "segments", 
      "tetrahydropyridine (MPTP) administration", 
      "addition", 
      "gt", 
      "extent", 
      "increase", 
      "dysfunction", 
      "beginning", 
      "dopaminergic nerve terminals", 
      "extension", 
      "striatum", 
      "administration", 
      "error"
    ], 
    "name": "The GT to GC single nucleotide polymorphism at the beginning of an alternative exon 2C of human MTH1 gene confers an amino terminal extension that functions as a mitochondrial targeting signal", 
    "pagination": "660-670", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044218921"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00109-006-0053-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16607562"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00109-006-0053-5", 
      "https://app.dimensions.ai/details/publication/pub.1044218921"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T09:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_427.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00109-006-0053-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00109-006-0053-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00109-006-0053-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00109-006-0053-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00109-006-0053-5'


 

This table displays all metadata directly associated to this object as RDF triples.

271 TRIPLES      22 PREDICATES      112 URIs      100 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00109-006-0053-5 schema:about N0367b97b88c442ee8ee639fd0da2fbc3
2 N3713c009cef845618b62f24fb721bacf
3 N4ecfebefa99045d2b300cf11d9d11306
4 N56e44237f65a47a18eb72d1b5b8e65dd
5 N57335c38917d4be0b44f8cf7e25d5aaf
6 N57db531226ef4e65bbf793bb5e847390
7 N7530655cd27541fe9839d47cc244851a
8 N7aa40ed1f70d47bba2f30d7458b64952
9 N82443c580a544cc7a3168d1aa59a46cc
10 N84eb3e34fdab44da93537f13b86488c4
11 Na3fbab2cf9584a079a8c09723bcac2c7
12 Na7617faebfa74329bb7e0608c9374a39
13 Nac3d76dbd1934881810c324b4b62c855
14 Nafb56c3b6f41432ea14934eef3bad882
15 Nbc6389e07bfa451787b11ed01750aaa6
16 Ne26e73c0a83244ff8049f2883b88cbb0
17 Nfec2397a117c4c68bb4cc0b84da1246b
18 anzsrc-for:03
19 anzsrc-for:0304
20 schema:author N05390cb576ce441ab6b23120dc3de1d5
21 schema:citation sg:pub.10.1007/s00401-001-0480-x
22 sg:pub.10.1023/a:1007058602594
23 sg:pub.10.1038/355273a0
24 sg:pub.10.1038/sj.cdd.4401788
25 schema:datePublished 2006-04-11
26 schema:datePublishedReg 2006-04-11
27 schema:description Human MTH1 protein hydrolyzes oxidized purine nucleotides 8-oxo-2′-deoxyguanosine triphosphate (8-oxo-dGTP), 2-OH-dATP or their ribo-forms to their monophosphates, thus minimizing replicational and transcriptional errors both in the nuclei and mitochondria. MTH1 suppresses mitochondrial dysfunction and cell death caused by H2O2. Furthermore, MTH1 suppresses the transient increase in 8-oxoguanine in mitochondrial DNA in the dopaminergic nerve terminals in mouse striatum after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration, and it protects the nerve terminals. We previously reported that a novel MTH1 allele with a single nucleotide polymorphism (SNP) in its exon 2c segment encodes the fourth MTH1 isoform, namely, MTH1a (p26), in addition to the three known isoforms, MTH1b (p22), c (p21), and d (p18). Another SNP located in exon 4 of the MTH1 gene, which is closely linked to the SNP in exon 2c, substitutes the Val83 residue in MTH1d with Met83. We herein show that all MTH1 isoforms efficiently hydrolyzed 2-OH-dATP and 8-oxo-dGTP. The amino terminal region of MTH1a functioned as a mitochondrial targeting signal when it was expressed in the HeLa cells as a fusion protein with enhanced green fluorescent protein. The cellular fractionation revealed that MTH1a(Met83) was localized in the mitochondria to the same extent as was MTH1d(Val83). However, the mitochondrial translocation of MTH1d(Met83) was less efficient than that of MTH1d(Val83).
28 schema:genre article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf Nc7ae93a6bb664d21bf1aacfbefcfe227
32 Nd10bf7e2830c4e13b463088cbfca5033
33 sg:journal.1057918
34 schema:keywords DNA
35 GC single nucleotide polymorphisms
36 H2O2
37 HeLa cells
38 MTH1
39 MTH1 gene
40 Met83
41 addition
42 administration
43 alleles
44 amino-terminal extension
45 amino-terminal region
46 beginning
47 cell death
48 cells
49 cellular fractionation
50 dATP
51 dGTP
52 death
53 dopaminergic nerve terminals
54 dysfunction
55 enhanced green fluorescent protein
56 error
57 exon 4
58 extension
59 extent
60 fluorescent protein
61 fractionation
62 function
63 fusion protein
64 genes
65 green fluorescent protein
66 gt
67 human MTH1 gene
68 hydrolyzes
69 increase
70 isoforms
71 mitochondria
72 mitochondrial DNA
73 mitochondrial dysfunction
74 mitochondrial translocation
75 monophosphate
76 mouse striatum
77 nerve terminals
78 nucleotide polymorphisms
79 nucleotides
80 nucleus
81 polymorphism
82 protein
83 purine nucleotides
84 region
85 residues
86 same extent
87 segments
88 signals
89 single nucleotide polymorphisms
90 striatum
91 terminal extension
92 terminal region
93 terminals
94 tetrahydropyridine (MPTP) administration
95 transcriptional errors
96 transient increase
97 translocation
98 triphosphate
99 schema:name The GT to GC single nucleotide polymorphism at the beginning of an alternative exon 2C of human MTH1 gene confers an amino terminal extension that functions as a mitochondrial targeting signal
100 schema:pagination 660-670
101 schema:productId N1710cad44e3d437b81a7a7eb7e830577
102 N3aaf557218f840858e91a5875183fbec
103 N9069be7d984f46d1b6bebb7e8c86dab8
104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044218921
105 https://doi.org/10.1007/s00109-006-0053-5
106 schema:sdDatePublished 2022-05-10T09:57
107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
108 schema:sdPublisher Naa4a7cbdc3ea4444883b396285b9478d
109 schema:url https://doi.org/10.1007/s00109-006-0053-5
110 sgo:license sg:explorer/license/
111 sgo:sdDataset articles
112 rdf:type schema:ScholarlyArticle
113 N0367b97b88c442ee8ee639fd0da2fbc3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Amino Acid Motifs
115 rdf:type schema:DefinedTerm
116 N05390cb576ce441ab6b23120dc3de1d5 rdf:first sg:person.01250623430.52
117 rdf:rest Nd1dfd834a4ed420f89fbe2e6484ee3dd
118 N07b7e156cf9f4b1d96ab07d23170f2e1 rdf:first sg:person.01057206274.30
119 rdf:rest rdf:nil
120 N1710cad44e3d437b81a7a7eb7e830577 schema:name dimensions_id
121 schema:value pub.1044218921
122 rdf:type schema:PropertyValue
123 N1eaeb8e405994eb8bc22a3557d3b4541 rdf:first sg:person.01257760056.37
124 rdf:rest N60acd1a562f24ece8d02ad024677ca22
125 N31017502889c4d7a881f2500567f447a rdf:first sg:person.0727600052.12
126 rdf:rest Naf58e944b64d49bdb848939f153638f1
127 N3713c009cef845618b62f24fb721bacf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Hydrolysis
129 rdf:type schema:DefinedTerm
130 N3aaf557218f840858e91a5875183fbec schema:name pubmed_id
131 schema:value 16607562
132 rdf:type schema:PropertyValue
133 N3f2932cbd05f4462a878bbf0d89417ab rdf:first sg:person.01051453135.70
134 rdf:rest N1eaeb8e405994eb8bc22a3557d3b4541
135 N4ecfebefa99045d2b300cf11d9d11306 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Cell Line
137 rdf:type schema:DefinedTerm
138 N56e44237f65a47a18eb72d1b5b8e65dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Mitochondria
140 rdf:type schema:DefinedTerm
141 N57335c38917d4be0b44f8cf7e25d5aaf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Protein Transport
143 rdf:type schema:DefinedTerm
144 N57db531226ef4e65bbf793bb5e847390 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Humans
146 rdf:type schema:DefinedTerm
147 N60acd1a562f24ece8d02ad024677ca22 rdf:first sg:person.010326533627.42
148 rdf:rest N31017502889c4d7a881f2500567f447a
149 N7530655cd27541fe9839d47cc244851a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Phosphoric Monoester Hydrolases
151 rdf:type schema:DefinedTerm
152 N7aa40ed1f70d47bba2f30d7458b64952 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Isoenzymes
154 rdf:type schema:DefinedTerm
155 N82443c580a544cc7a3168d1aa59a46cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Polymorphism, Single Nucleotide
157 rdf:type schema:DefinedTerm
158 N84eb3e34fdab44da93537f13b86488c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Protein Sorting Signals
160 rdf:type schema:DefinedTerm
161 N9069be7d984f46d1b6bebb7e8c86dab8 schema:name doi
162 schema:value 10.1007/s00109-006-0053-5
163 rdf:type schema:PropertyValue
164 Na3fbab2cf9584a079a8c09723bcac2c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Amino Acid Sequence
166 rdf:type schema:DefinedTerm
167 Na7617faebfa74329bb7e0608c9374a39 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Recombinant Fusion Proteins
169 rdf:type schema:DefinedTerm
170 Naa4a7cbdc3ea4444883b396285b9478d schema:name Springer Nature - SN SciGraph project
171 rdf:type schema:Organization
172 Nac3d76dbd1934881810c324b4b62c855 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name DNA Repair Enzymes
174 rdf:type schema:DefinedTerm
175 Naf58e944b64d49bdb848939f153638f1 rdf:first sg:person.01263076224.94
176 rdf:rest N07b7e156cf9f4b1d96ab07d23170f2e1
177 Nafb56c3b6f41432ea14934eef3bad882 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Exons
179 rdf:type schema:DefinedTerm
180 Nbc6389e07bfa451787b11ed01750aaa6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Alternative Splicing
182 rdf:type schema:DefinedTerm
183 Nc7ae93a6bb664d21bf1aacfbefcfe227 schema:issueNumber 8
184 rdf:type schema:PublicationIssue
185 Nd10bf7e2830c4e13b463088cbfca5033 schema:volumeNumber 84
186 rdf:type schema:PublicationVolume
187 Nd1dfd834a4ed420f89fbe2e6484ee3dd rdf:first sg:person.0612577114.06
188 rdf:rest N3f2932cbd05f4462a878bbf0d89417ab
189 Ne26e73c0a83244ff8049f2883b88cbb0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Molecular Sequence Data
191 rdf:type schema:DefinedTerm
192 Nfec2397a117c4c68bb4cc0b84da1246b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Adenosine Triphosphate
194 rdf:type schema:DefinedTerm
195 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
196 schema:name Chemical Sciences
197 rdf:type schema:DefinedTerm
198 anzsrc-for:0304 schema:inDefinedTermSet anzsrc-for:
199 schema:name Medicinal and Biomolecular Chemistry
200 rdf:type schema:DefinedTerm
201 sg:journal.1057918 schema:issn 0946-2716
202 1432-1440
203 schema:name Journal of Molecular Medicine
204 schema:publisher Springer Nature
205 rdf:type schema:Periodical
206 sg:person.010326533627.42 schema:affiliation grid-institutes:grid.177174.3
207 schema:familyName Kang
208 schema:givenName Dongchon
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010326533627.42
210 rdf:type schema:Person
211 sg:person.01051453135.70 schema:affiliation grid-institutes:grid.177174.3
212 schema:familyName Yoshimura
213 schema:givenName Daisuke
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051453135.70
215 rdf:type schema:Person
216 sg:person.01057206274.30 schema:affiliation grid-institutes:grid.177174.3
217 schema:familyName Nakabeppu
218 schema:givenName Yusaku
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057206274.30
220 rdf:type schema:Person
221 sg:person.01250623430.52 schema:affiliation grid-institutes:grid.177174.3
222 schema:familyName Sakai
223 schema:givenName Yasunari
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250623430.52
225 rdf:type schema:Person
226 sg:person.01257760056.37 schema:affiliation grid-institutes:grid.177174.3
227 schema:familyName Furuichi
228 schema:givenName Masato
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257760056.37
230 rdf:type schema:Person
231 sg:person.01263076224.94 schema:affiliation grid-institutes:grid.177174.3
232 schema:familyName Hara
233 schema:givenName Toshiro
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263076224.94
235 rdf:type schema:Person
236 sg:person.0612577114.06 schema:affiliation grid-institutes:grid.430387.b
237 schema:familyName Oda
238 schema:givenName Hisanobu
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612577114.06
240 rdf:type schema:Person
241 sg:person.0727600052.12 schema:affiliation grid-institutes:grid.136593.b
242 schema:familyName Iwai
243 schema:givenName Shigenori
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727600052.12
245 rdf:type schema:Person
246 sg:pub.10.1007/s00401-001-0480-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028765071
247 https://doi.org/10.1007/s00401-001-0480-x
248 rdf:type schema:CreativeWork
249 sg:pub.10.1023/a:1007058602594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002491879
250 https://doi.org/10.1023/a:1007058602594
251 rdf:type schema:CreativeWork
252 sg:pub.10.1038/355273a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021905091
253 https://doi.org/10.1038/355273a0
254 rdf:type schema:CreativeWork
255 sg:pub.10.1038/sj.cdd.4401788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033331524
256 https://doi.org/10.1038/sj.cdd.4401788
257 rdf:type schema:CreativeWork
258 grid-institutes:grid.136593.b schema:alternateName Division of Chemistry, Graduate School of Engineering Science, Osaka University, 560-8531, Osaka, Japan
259 schema:name Division of Chemistry, Graduate School of Engineering Science, Osaka University, 560-8531, Osaka, Japan
260 rdf:type schema:Organization
261 grid-institutes:grid.177174.3 schema:alternateName Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan
262 Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan
263 Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 812-8582, Fukuoka, Japan
264 schema:name Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan
265 Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan
266 Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 812-8582, Fukuoka, Japan
267 rdf:type schema:Organization
268 grid-institutes:grid.430387.b schema:alternateName Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 08854, Piscataway, NJ, USA
269 schema:name Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 08854, Piscataway, NJ, USA
270 Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 812-8582, Fukuoka, Japan
271 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...