Geschlechtergerechte epidemiologische Datenanalyse: Methodische Aspekte und empirische Befunde View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-01

AUTHORS

I. Jahn, R. Foraita

ABSTRACT

In Germany gender-sensitive approaches are part of guidelines for good epidemiological practice as well as health reporting. They are increasingly claimed to realize the gender mainstreaming strategy in research funding by the federation and federal states. This paper focuses on methodological aspects of data analysis, as an empirical data example of which serves the health report of Bremen, a population-based cross-sectional study. Health reporting requires analysis and reporting methods that are able to discover sex/gender issues of questions, on the one hand, and consider how results can adequately be communicated, on the other hand. The core question is: Which consequences do a different inclusion of the category sex in different statistical analyses for identification of potential target groups have on the results? As evaluation methods logistic regressions as well as a two-stage procedure were exploratively conducted. This procedure combines graphical models with CHAID decision trees and allows for visualising complex results. Both methods are analysed by stratification as well as adjusted by sex/gender and compared with each other. As a result, only stratified analyses are able to detect differences between the sexes and within the sex/gender groups as long as one cannot resort to previous knowledge. Adjusted analyses can detect sex/gender differences only if interaction terms have been included in the model. Results are discussed from a statistical-epidemiological perspective as well as in the context of health reporting. As a conclusion, the question, if a statistical method is gender-sensitive, can only be answered by having concrete research questions and known conditions. Often, an appropriate statistic procedure can be chosen after conducting a separate analysis for women and men. Future gender studies deserve innovative study designs as well as conceptual distinctiveness with regard to the biological and the sociocultural elements of the category sex/gender. More... »

PAGES

13-27

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00103-008-0415-y

DOI

http://dx.doi.org/10.1007/s00103-008-0415-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052719332

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18185965


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross-Sectional Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Collection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Decision Trees", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Empiricism", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Epidemiologic Methods", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Germany", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Guidelines as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Health Surveys", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prejudice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sex Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Smoking", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Bremer Institut f\u00fcr Pr\u00e4ventionsforschung und Sozialmedizin, Bremen, BRD", 
            "Universit\u00e4t Bremen, Bremer Institut f\u00fcr Pr\u00e4ventionsforschung und Sozialmedizin (BIPS), Arbeitsgruppe Frauen und Geschlechterforschung, Linzer Stra\u00dfe 10, 28359, Bremen, BRD"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jahn", 
        "givenName": "I.", 
        "id": "sg:person.0716153123.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716153123.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Bremer Institut f\u00fcr Pr\u00e4ventionsforschung und Sozialmedizin, Bremen, BRD"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Foraita", 
        "givenName": "R.", 
        "id": "sg:person.01320706365.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320706365.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01593182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002247040", 
          "https://doi.org/10.1007/bf01593182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0197-2456(00)00086-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002927447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0277-9536(95)00335-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003408725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jech.51.2.106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006390122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jech.2003.015297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013287698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017081457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0493-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017350969", 
          "https://doi.org/10.1007/978-1-4612-0493-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0493-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017350969", 
          "https://doi.org/10.1007/978-1-4612-0493-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/her/cyg061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033240524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amepre.2006.11.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033587237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1164/ajrccm.161.6.9909056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034671910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00038-003-2088-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035356030", 
          "https://doi.org/10.1007/s00038-003-2088-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4324/9780203771587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035715781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10389-006-0087-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037125255", 
          "https://doi.org/10.1007/s10389-006-0087-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10389-006-0087-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037125255", 
          "https://doi.org/10.1007/s10389-006-0087-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511897375.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041590923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042638199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042638199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/oem.57.8.521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042902155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/oem.57.8.521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042902155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajim.10297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046392249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.2770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046729601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jech.2003.015289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047260814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ije/dyg156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053120393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-2000-10980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057401540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-2004-813040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057428425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-2006-948616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057465404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurpub/3.3.151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059578193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083111016", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2986296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101982677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2986296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101982677"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-01", 
    "datePublishedReg": "2008-01-01", 
    "description": "In Germany gender-sensitive approaches are part of guidelines for good epidemiological practice as well as health reporting. They are increasingly claimed to realize the gender mainstreaming strategy in research funding by the federation and federal states. This paper focuses on methodological aspects of data analysis, as an empirical data example of which serves the health report of Bremen, a population-based cross-sectional study. Health reporting requires analysis and reporting methods that are able to discover sex/gender issues of questions, on the one hand, and consider how results can adequately be communicated, on the other hand. The core question is: Which consequences do a different inclusion of the category sex in different statistical analyses for identification of potential target groups have on the results? As evaluation methods logistic regressions as well as a two-stage procedure were exploratively conducted. This procedure combines graphical models with CHAID decision trees and allows for visualising complex results. Both methods are analysed by stratification as well as adjusted by sex/gender and compared with each other. As a result, only stratified analyses are able to detect differences between the sexes and within the sex/gender groups as long as one cannot resort to previous knowledge. Adjusted analyses can detect sex/gender differences only if interaction terms have been included in the model. Results are discussed from a statistical-epidemiological perspective as well as in the context of health reporting. As a conclusion, the question, if a statistical method is gender-sensitive, can only be answered by having concrete research questions and known conditions. Often, an appropriate statistic procedure can be chosen after conducting a separate analysis for women and men. Future gender studies deserve innovative study designs as well as conceptual distinctiveness with regard to the biological and the sociocultural elements of the category sex/gender.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00103-008-0415-y", 
    "inLanguage": [
      "de"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1032465", 
        "issn": [
          "1436-9990", 
          "1437-1588"
        ], 
        "name": "Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "51"
      }
    ], 
    "name": "Geschlechtergerechte epidemiologische Datenanalyse: Methodische Aspekte und empirische Befunde", 
    "pagination": "13-27", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fb1e279aca1c31ccd5ac028e65ab587c6a7464a870b730fc39305171bcd007bb"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18185965"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101181368"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00103-008-0415-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052719332"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00103-008-0415-y", 
      "https://app.dimensions.ai/details/publication/pub.1052719332"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13078_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00103-008-0415-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00103-008-0415-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00103-008-0415-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00103-008-0415-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00103-008-0415-y'


 

This table displays all metadata directly associated to this object as RDF triples.

239 TRIPLES      21 PREDICATES      75 URIs      41 LITERALS      29 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00103-008-0415-y schema:about N091aa632b40546afbdc5469627d068fe
2 N210fb4c9b595443c89fe5449ae13f6dc
3 N3a7efeb83eaf4e05bb022e9d5261cbf2
4 N4eb7db6121434729b1f14fd3e28bc33b
5 N616567a2403146f48c16efe35b8e53cd
6 N669afde3cb844ee0ba2fdc47d76c4577
7 N77b28610828449fe8c087afec877fd15
8 N843135f518454e3f833913ac073e4e0a
9 N8813b2f012114559a618bd8c315e9870
10 N9caa48a7521c4d5aa3123b062f83f3d6
11 Na288bc4c1cb44eb3919cc6d7f821e8e3
12 Nabebcccb761a4903bf9b9df34c5b50e0
13 Nad886a2d696a48b58688a8599f77e81f
14 Nb3e85075fc634f45bb7c914dd66a7303
15 Ndb79d6906a824950a655197b3c01d1b0
16 Ndcd119d87cc44d6f995fd66496ebc881
17 Ne15140ee71b24f0e88b87389b2685f6c
18 Ne7ec4c1f3e6245bf800c79cd4efb1e56
19 Nf903dc80e4a445bea39926f28681e9bc
20 Nfe406fdc91804f2fa71ef3c981b8943b
21 anzsrc-for:11
22 anzsrc-for:1117
23 schema:author Nc5c0340cff7d424ab008797a68923fb1
24 schema:citation sg:pub.10.1007/978-1-4612-0493-0
25 sg:pub.10.1007/bf01593182
26 sg:pub.10.1007/s00038-003-2088-5
27 sg:pub.10.1007/s10389-006-0087-8
28 https://app.dimensions.ai/details/publication/pub.1083111016
29 https://doi.org/10.1002/ajim.10297
30 https://doi.org/10.1002/sim.2154
31 https://doi.org/10.1002/sim.2702
32 https://doi.org/10.1002/sim.2770
33 https://doi.org/10.1016/0277-9536(95)00335-5
34 https://doi.org/10.1016/j.amepre.2006.11.007
35 https://doi.org/10.1016/s0197-2456(00)00086-6
36 https://doi.org/10.1017/cbo9780511897375.006
37 https://doi.org/10.1055/s-2000-10980
38 https://doi.org/10.1055/s-2004-813040
39 https://doi.org/10.1055/s-2006-948616
40 https://doi.org/10.1093/eurpub/3.3.151
41 https://doi.org/10.1093/her/cyg061
42 https://doi.org/10.1093/ije/dyg156
43 https://doi.org/10.1136/jech.2003.015289
44 https://doi.org/10.1136/jech.2003.015297
45 https://doi.org/10.1136/jech.51.2.106
46 https://doi.org/10.1136/oem.57.8.521
47 https://doi.org/10.1164/ajrccm.161.6.9909056
48 https://doi.org/10.2307/2986296
49 https://doi.org/10.4324/9780203771587
50 schema:datePublished 2008-01
51 schema:datePublishedReg 2008-01-01
52 schema:description In Germany gender-sensitive approaches are part of guidelines for good epidemiological practice as well as health reporting. They are increasingly claimed to realize the gender mainstreaming strategy in research funding by the federation and federal states. This paper focuses on methodological aspects of data analysis, as an empirical data example of which serves the health report of Bremen, a population-based cross-sectional study. Health reporting requires analysis and reporting methods that are able to discover sex/gender issues of questions, on the one hand, and consider how results can adequately be communicated, on the other hand. The core question is: Which consequences do a different inclusion of the category sex in different statistical analyses for identification of potential target groups have on the results? As evaluation methods logistic regressions as well as a two-stage procedure were exploratively conducted. This procedure combines graphical models with CHAID decision trees and allows for visualising complex results. Both methods are analysed by stratification as well as adjusted by sex/gender and compared with each other. As a result, only stratified analyses are able to detect differences between the sexes and within the sex/gender groups as long as one cannot resort to previous knowledge. Adjusted analyses can detect sex/gender differences only if interaction terms have been included in the model. Results are discussed from a statistical-epidemiological perspective as well as in the context of health reporting. As a conclusion, the question, if a statistical method is gender-sensitive, can only be answered by having concrete research questions and known conditions. Often, an appropriate statistic procedure can be chosen after conducting a separate analysis for women and men. Future gender studies deserve innovative study designs as well as conceptual distinctiveness with regard to the biological and the sociocultural elements of the category sex/gender.
53 schema:genre research_article
54 schema:inLanguage de
55 schema:isAccessibleForFree false
56 schema:isPartOf N4c9145ef87b94b6e9cd050c1dcbbc4a5
57 N56d743e97b5c4aa0a47b312ee03f2828
58 sg:journal.1032465
59 schema:name Geschlechtergerechte epidemiologische Datenanalyse: Methodische Aspekte und empirische Befunde
60 schema:pagination 13-27
61 schema:productId N48157a2c1be246a5befd56a97d7f8f5b
62 N4a48d31d78194829831e4ea3faeb4c48
63 N5877d19fa25244eeb7a37c02a40c1780
64 N7490c18715dc4d9dae3b0869a8a9be45
65 Nae1b2ad6cd58469ba5e46bd5904edb3f
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052719332
67 https://doi.org/10.1007/s00103-008-0415-y
68 schema:sdDatePublished 2019-04-11T14:28
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N3397020827084508a33744eb08a1563e
71 schema:url http://link.springer.com/10.1007%2Fs00103-008-0415-y
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N027d23b21957473da4fe2cc0014f3f75 schema:name Bremer Institut für Präventionsforschung und Sozialmedizin, Bremen, BRD
76 rdf:type schema:Organization
77 N091aa632b40546afbdc5469627d068fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Prejudice
79 rdf:type schema:DefinedTerm
80 N210fb4c9b595443c89fe5449ae13f6dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Humans
82 rdf:type schema:DefinedTerm
83 N3397020827084508a33744eb08a1563e schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N3a7efeb83eaf4e05bb022e9d5261cbf2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Sex Factors
87 rdf:type schema:DefinedTerm
88 N48157a2c1be246a5befd56a97d7f8f5b schema:name dimensions_id
89 schema:value pub.1052719332
90 rdf:type schema:PropertyValue
91 N4a48d31d78194829831e4ea3faeb4c48 schema:name nlm_unique_id
92 schema:value 101181368
93 rdf:type schema:PropertyValue
94 N4c9145ef87b94b6e9cd050c1dcbbc4a5 schema:issueNumber 1
95 rdf:type schema:PublicationIssue
96 N4eb7db6121434729b1f14fd3e28bc33b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Guidelines as Topic
98 rdf:type schema:DefinedTerm
99 N56d743e97b5c4aa0a47b312ee03f2828 schema:volumeNumber 51
100 rdf:type schema:PublicationVolume
101 N5877d19fa25244eeb7a37c02a40c1780 schema:name doi
102 schema:value 10.1007/s00103-008-0415-y
103 rdf:type schema:PropertyValue
104 N616567a2403146f48c16efe35b8e53cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Models, Statistical
106 rdf:type schema:DefinedTerm
107 N669afde3cb844ee0ba2fdc47d76c4577 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Middle Aged
109 rdf:type schema:DefinedTerm
110 N7490c18715dc4d9dae3b0869a8a9be45 schema:name pubmed_id
111 schema:value 18185965
112 rdf:type schema:PropertyValue
113 N77b28610828449fe8c087afec877fd15 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Adult
115 rdf:type schema:DefinedTerm
116 N843135f518454e3f833913ac073e4e0a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Data Interpretation, Statistical
118 rdf:type schema:DefinedTerm
119 N8813b2f012114559a618bd8c315e9870 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Risk Factors
121 rdf:type schema:DefinedTerm
122 N9caa48a7521c4d5aa3123b062f83f3d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Epidemiologic Methods
124 rdf:type schema:DefinedTerm
125 Na288bc4c1cb44eb3919cc6d7f821e8e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Data Collection
127 rdf:type schema:DefinedTerm
128 Nabebcccb761a4903bf9b9df34c5b50e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Male
130 rdf:type schema:DefinedTerm
131 Nad886a2d696a48b58688a8599f77e81f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Empiricism
133 rdf:type schema:DefinedTerm
134 Nae1b2ad6cd58469ba5e46bd5904edb3f schema:name readcube_id
135 schema:value fb1e279aca1c31ccd5ac028e65ab587c6a7464a870b730fc39305171bcd007bb
136 rdf:type schema:PropertyValue
137 Nb3e85075fc634f45bb7c914dd66a7303 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Health Surveys
139 rdf:type schema:DefinedTerm
140 Nb50b6ac7359d4a959a14bd05f2822376 rdf:first sg:person.01320706365.23
141 rdf:rest rdf:nil
142 Nc5c0340cff7d424ab008797a68923fb1 rdf:first sg:person.0716153123.23
143 rdf:rest Nb50b6ac7359d4a959a14bd05f2822376
144 Nd0e794ed11af45c9ac78671faddc8976 schema:name Bremer Institut für Präventionsforschung und Sozialmedizin, Bremen, BRD
145 Universität Bremen, Bremer Institut für Präventionsforschung und Sozialmedizin (BIPS), Arbeitsgruppe Frauen und Geschlechterforschung, Linzer Straße 10, 28359, Bremen, BRD
146 rdf:type schema:Organization
147 Ndb79d6906a824950a655197b3c01d1b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Aged
149 rdf:type schema:DefinedTerm
150 Ndcd119d87cc44d6f995fd66496ebc881 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Smoking
152 rdf:type schema:DefinedTerm
153 Ne15140ee71b24f0e88b87389b2685f6c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Decision Trees
155 rdf:type schema:DefinedTerm
156 Ne7ec4c1f3e6245bf800c79cd4efb1e56 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Cross-Sectional Studies
158 rdf:type schema:DefinedTerm
159 Nf903dc80e4a445bea39926f28681e9bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Germany
161 rdf:type schema:DefinedTerm
162 Nfe406fdc91804f2fa71ef3c981b8943b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Female
164 rdf:type schema:DefinedTerm
165 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
166 schema:name Medical and Health Sciences
167 rdf:type schema:DefinedTerm
168 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
169 schema:name Public Health and Health Services
170 rdf:type schema:DefinedTerm
171 sg:journal.1032465 schema:issn 1436-9990
172 1437-1588
173 schema:name Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz
174 rdf:type schema:Periodical
175 sg:person.01320706365.23 schema:affiliation N027d23b21957473da4fe2cc0014f3f75
176 schema:familyName Foraita
177 schema:givenName R.
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320706365.23
179 rdf:type schema:Person
180 sg:person.0716153123.23 schema:affiliation Nd0e794ed11af45c9ac78671faddc8976
181 schema:familyName Jahn
182 schema:givenName I.
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716153123.23
184 rdf:type schema:Person
185 sg:pub.10.1007/978-1-4612-0493-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017350969
186 https://doi.org/10.1007/978-1-4612-0493-0
187 rdf:type schema:CreativeWork
188 sg:pub.10.1007/bf01593182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002247040
189 https://doi.org/10.1007/bf01593182
190 rdf:type schema:CreativeWork
191 sg:pub.10.1007/s00038-003-2088-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035356030
192 https://doi.org/10.1007/s00038-003-2088-5
193 rdf:type schema:CreativeWork
194 sg:pub.10.1007/s10389-006-0087-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037125255
195 https://doi.org/10.1007/s10389-006-0087-8
196 rdf:type schema:CreativeWork
197 https://app.dimensions.ai/details/publication/pub.1083111016 schema:CreativeWork
198 https://doi.org/10.1002/ajim.10297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046392249
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1002/sim.2154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042638199
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1002/sim.2702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017081457
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1002/sim.2770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046729601
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/0277-9536(95)00335-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003408725
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.amepre.2006.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033587237
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/s0197-2456(00)00086-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002927447
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1017/cbo9780511897375.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041590923
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1055/s-2000-10980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057401540
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1055/s-2004-813040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057428425
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1055/s-2006-948616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057465404
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1093/eurpub/3.3.151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059578193
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1093/her/cyg061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033240524
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1093/ije/dyg156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053120393
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1136/jech.2003.015289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047260814
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1136/jech.2003.015297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013287698
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1136/jech.51.2.106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006390122
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1136/oem.57.8.521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042902155
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1164/ajrccm.161.6.9909056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034671910
235 rdf:type schema:CreativeWork
236 https://doi.org/10.2307/2986296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101982677
237 rdf:type schema:CreativeWork
238 https://doi.org/10.4324/9780203771587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035715781
239 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...