The future of heart failure with preserved ejection fraction View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-06-29

AUTHORS

Frank R. Heinzel, Sanjiv J. Shah

ABSTRACT

Heart failure (HF) with preserved ejection fraction (HFpEF) is a multi-organ, systemic syndrome that involves multiple cardiac and extracardiac pathophysiologic abnormalities. Because HFpEF is a heterogeneous syndrome and resistant to a “one-size-fits-all” approach it has proven to be very difficult to treat. For this reason, several research groups have been working on methods for classifying HFpEF and testing targeted therapeutics for the HFpEF subtypes identified. Apart from conventional classification strategies based on comorbidity, etiology, left ventricular remodeling, and hemodynamic subtypes, researchers have been combining deep phenotyping with innovative analytical strategies (e.g., machine learning) to classify HFpEF into therapeutically homogeneous subtypes over the past few years. Despite the growing excitement for such approaches, there are several potential pitfalls to their use, and there is a pressing need to follow up on data-driven HFpEF subtypes in order to determine their underlying mechanisms and molecular basis. Here we provide a framework for understanding the phenotype-based approach to HFpEF by reviewing (1) the historical context of HFpEF; (2) the current HFpEF paradigm of comorbidity-induced inflammation and endothelial dysfunction; (3) various methods of sub-phenotyping HFpEF; (4) comorbidity-based classification and treatment of HFpEF; (5) machine learning approaches to classifying HFpEF; (6) examples from HFpEF clinical trials; and (7) the future of phenomapping (machine learning and other advanced analytics) for the classification of HFpEF. More... »

PAGES

308-323

References to SciGraph publications

  • 2017-06-05. Text Mining of the Electronic Health Record: An Information Extraction Approach for Automated Identification and Subphenotyping of HFpEF Patients for Clinical Trials in JOURNAL OF CARDIOVASCULAR TRANSLATIONAL RESEARCH
  • 2016-10-31. How to Develop and Implement a Specialized Heart Failure with Preserved Ejection Fraction Clinical Program in CURRENT CARDIOLOGY REPORTS
  • 2019-07-18. Approaching Higher Dimension Imaging Data Using Cluster-Based Hierarchical Modeling in Patients with Heart Failure Preserved Ejection Fraction in SCIENTIFIC REPORTS
  • 2021-05-11. Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms in NATURE COMMUNICATIONS
  • 2019-04-05. Effects of blood pressure lowering in patients with heart failure with preserved ejection fraction: a systematic review and meta-analysis in HYPERTENSION RESEARCH
  • 2017-06. Innovative Clinical Trial Designs for Precision Medicine in Heart Failure with Preserved Ejection Fraction in JOURNAL OF CARDIOVASCULAR TRANSLATIONAL RESEARCH
  • 2021-12-08. Combinatorial, additive and dose-dependent drug–microbiome associations in NATURE
  • 2017-03-03. Phenomapping for the Identification of Hypertensive Patients with the Myocardial Substrate for Heart Failure with Preserved Ejection Fraction in JOURNAL OF CARDIOVASCULAR TRANSLATIONAL RESEARCH
  • 2021-02-19. Diabetic phenotype and prognosis of patients with heart failure and preserved ejection fraction in a real life cohort in CARDIOVASCULAR DIABETOLOGY
  • 2021-03-01. Disproportionate left atrial myopathy in heart failure with preserved ejection fraction among participants of the PROMIS-HFpEF study in SCIENTIFIC REPORTS
  • 2020-03-30. Evaluation and management of heart failure with preserved ejection fraction in NATURE REVIEWS CARDIOLOGY
  • 2021-01-11. Cellular and molecular pathobiology of heart failure with preserved ejection fraction in NATURE REVIEWS CARDIOLOGY
  • 2021-05-11. A machine learning model for identifying patients at risk for wild-type transthyretin amyloid cardiomyopathy in NATURE COMMUNICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00059-022-05124-8

    DOI

    http://dx.doi.org/10.1007/s00059-022-05124-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1149064293

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/35767073


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Cardiorespiratory Medicine and Haematology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Heart Failure", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hemodynamics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phenotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Stroke Volume", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Syndrome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ventricular Function, Left", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ventricular Remodeling", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Partner Site Berlin, Deutsches Zentrum f\u00fcr Herz-Kreislauf-Forschung eV, Berlin, Germany", 
              "id": "http://www.grid.ac/institutes/grid.452396.f", 
              "name": [
                "Medizinische Klinik mit Schwerpunkt Kardiologie, Charit\u00e9 \u2013 Universit\u00e4tsmedizin, Campus Virchow-Klinikum, Berlin, Germany", 
                "Partner Site Berlin, Deutsches Zentrum f\u00fcr Herz-Kreislauf-Forschung eV, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Heinzel", 
            "givenName": "Frank R.", 
            "id": "sg:person.01204024671.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204024671.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA", 
              "id": "http://www.grid.ac/institutes/grid.16753.36", 
              "name": [
                "Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shah", 
            "givenName": "Sanjiv J.", 
            "id": "sg:person.016012163307.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016012163307.51"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11886-016-0802-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046102801", 
              "https://doi.org/10.1007/s11886-016-0802-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-021-04177-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1143722489", 
              "https://doi.org/10.1038/s41586-021-04177-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41569-020-0363-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125986025", 
              "https://doi.org/10.1038/s41569-020-0363-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41569-020-00480-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1134472590", 
              "https://doi.org/10.1038/s41569-020-00480-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-021-22876-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1137913850", 
              "https://doi.org/10.1038/s41467-021-22876-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-021-84133-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1135823509", 
              "https://doi.org/10.1038/s41598-021-84133-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12933-021-01242-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1135467600", 
              "https://doi.org/10.1186/s12933-021-01242-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41440-019-0216-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113185054", 
              "https://doi.org/10.1038/s41440-019-0216-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12265-017-9759-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090357656", 
              "https://doi.org/10.1007/s12265-017-9759-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-021-22877-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1137926338", 
              "https://doi.org/10.1038/s41467-021-22877-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12265-017-9752-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085865113", 
              "https://doi.org/10.1007/s12265-017-9752-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-019-46873-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1118099143", 
              "https://doi.org/10.1038/s41598-019-46873-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12265-017-9739-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084034840", 
              "https://doi.org/10.1007/s12265-017-9739-z"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-06-29", 
        "datePublishedReg": "2022-06-29", 
        "description": "Heart failure (HF) with preserved ejection fraction (HFpEF) is a\u00a0multi-organ, systemic syndrome that involves multiple cardiac and extracardiac pathophysiologic abnormalities. Because HFpEF is a\u00a0heterogeneous syndrome and resistant to a\u00a0\u201cone-size-fits-all\u201d approach it has proven to be very difficult to treat. For this reason, several research groups have been working on methods for classifying HFpEF and testing targeted therapeutics for the HFpEF subtypes identified. Apart from conventional classification strategies based on comorbidity, etiology, left ventricular remodeling, and hemodynamic subtypes, researchers have been combining deep phenotyping with innovative analytical strategies (e.g., machine learning) to classify HFpEF into therapeutically homogeneous subtypes over the past few years. Despite the growing excitement for such approaches, there are several potential pitfalls to their use, and there is a\u00a0pressing need to follow\u00a0up on data-driven HFpEF subtypes in order to determine their underlying mechanisms and molecular basis. Here we provide a\u00a0framework for understanding the phenotype-based approach to HFpEF by reviewing (1)\u00a0the historical context of HFpEF; (2)\u00a0the current HFpEF paradigm of comorbidity-induced inflammation and endothelial dysfunction; (3)\u00a0various methods of sub-phenotyping HFpEF; (4)\u00a0comorbidity-based classification and treatment of HFpEF; (5)\u00a0machine learning approaches to classifying HFpEF; (6)\u00a0examples from HFpEF clinical trials; and (7)\u00a0the future of phenomapping (machine learning and other advanced analytics) for the classification of HFpEF.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00059-022-05124-8", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.9848956", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4244665", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8554857", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2543248", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7614172", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1087175", 
            "issn": [
              "0340-9937", 
              "1615-6692"
            ], 
            "name": "Herz", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "47"
          }
        ], 
        "keywords": [
          "heart failure", 
          "ejection fraction", 
          "treatment of HFpEF", 
          "HFpEF clinical trials", 
          "hemodynamic subtypes", 
          "endothelial dysfunction", 
          "systemic syndrome", 
          "pathophysiologic abnormalities", 
          "ventricular remodeling", 
          "clinical trials", 
          "HFpEF", 
          "heterogeneous syndrome", 
          "subtypes", 
          "deep phenotyping", 
          "underlying mechanism", 
          "homogeneous subtypes", 
          "syndrome", 
          "phenotype-based approach", 
          "potential pitfalls", 
          "comorbidities", 
          "inflammation", 
          "failure", 
          "dysfunction", 
          "molecular basis", 
          "etiology", 
          "abnormalities", 
          "trials", 
          "remodeling", 
          "treatment", 
          "therapeutics", 
          "phenomapping", 
          "classification strategy", 
          "innovative analytical strategies", 
          "group", 
          "phenotyping", 
          "years", 
          "research groups", 
          "such approaches", 
          "testing", 
          "strategies", 
          "classification", 
          "pitfalls", 
          "fraction", 
          "mechanism", 
          "need", 
          "use", 
          "machine", 
          "reasons", 
          "analytical strategy", 
          "future", 
          "approach", 
          "method", 
          "excitement", 
          "framework", 
          "paradigm", 
          "basis", 
          "researchers", 
          "example", 
          "context", 
          "order", 
          "historical context"
        ], 
        "name": "The future of heart failure with preserved ejection fraction", 
        "pagination": "308-323", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1149064293"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00059-022-05124-8"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "35767073"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00059-022-05124-8", 
          "https://app.dimensions.ai/details/publication/pub.1149064293"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:09", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_924.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00059-022-05124-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00059-022-05124-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00059-022-05124-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00059-022-05124-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00059-022-05124-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    227 TRIPLES      21 PREDICATES      107 URIs      86 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00059-022-05124-8 schema:about N0f962d81dbc747a6bdc13f5421720a8a
    2 N50554edd4f5141bfb252286c961215dc
    3 N661bd8f332484efba02d0e0107a97487
    4 N70c8c50a9ada454abcf6d634746a868c
    5 N8e95c1935ef74877b5d65e6c24bc9f67
    6 Ndfb36512f46c4227b8cef92256339107
    7 Ne7a57f47ac8e4030879b80b081c6ca1f
    8 Nfb14d1dced5d4a3d87f9e8ec277e3d09
    9 anzsrc-for:11
    10 anzsrc-for:1102
    11 schema:author N58eb17cd6f964c1c82ba7100aa72fe13
    12 schema:citation sg:pub.10.1007/s11886-016-0802-1
    13 sg:pub.10.1007/s12265-017-9739-z
    14 sg:pub.10.1007/s12265-017-9752-2
    15 sg:pub.10.1007/s12265-017-9759-8
    16 sg:pub.10.1038/s41440-019-0216-8
    17 sg:pub.10.1038/s41467-021-22876-9
    18 sg:pub.10.1038/s41467-021-22877-8
    19 sg:pub.10.1038/s41569-020-00480-6
    20 sg:pub.10.1038/s41569-020-0363-2
    21 sg:pub.10.1038/s41586-021-04177-9
    22 sg:pub.10.1038/s41598-019-46873-7
    23 sg:pub.10.1038/s41598-021-84133-9
    24 sg:pub.10.1186/s12933-021-01242-5
    25 schema:datePublished 2022-06-29
    26 schema:datePublishedReg 2022-06-29
    27 schema:description Heart failure (HF) with preserved ejection fraction (HFpEF) is a multi-organ, systemic syndrome that involves multiple cardiac and extracardiac pathophysiologic abnormalities. Because HFpEF is a heterogeneous syndrome and resistant to a “one-size-fits-all” approach it has proven to be very difficult to treat. For this reason, several research groups have been working on methods for classifying HFpEF and testing targeted therapeutics for the HFpEF subtypes identified. Apart from conventional classification strategies based on comorbidity, etiology, left ventricular remodeling, and hemodynamic subtypes, researchers have been combining deep phenotyping with innovative analytical strategies (e.g., machine learning) to classify HFpEF into therapeutically homogeneous subtypes over the past few years. Despite the growing excitement for such approaches, there are several potential pitfalls to their use, and there is a pressing need to follow up on data-driven HFpEF subtypes in order to determine their underlying mechanisms and molecular basis. Here we provide a framework for understanding the phenotype-based approach to HFpEF by reviewing (1) the historical context of HFpEF; (2) the current HFpEF paradigm of comorbidity-induced inflammation and endothelial dysfunction; (3) various methods of sub-phenotyping HFpEF; (4) comorbidity-based classification and treatment of HFpEF; (5) machine learning approaches to classifying HFpEF; (6) examples from HFpEF clinical trials; and (7) the future of phenomapping (machine learning and other advanced analytics) for the classification of HFpEF.
    28 schema:genre article
    29 schema:isAccessibleForFree true
    30 schema:isPartOf N0e9a8212683041a1a0977be9e80b73a0
    31 Ncf7fcca84e4e4815bae4250595bff5ad
    32 sg:journal.1087175
    33 schema:keywords HFpEF
    34 HFpEF clinical trials
    35 abnormalities
    36 analytical strategy
    37 approach
    38 basis
    39 classification
    40 classification strategy
    41 clinical trials
    42 comorbidities
    43 context
    44 deep phenotyping
    45 dysfunction
    46 ejection fraction
    47 endothelial dysfunction
    48 etiology
    49 example
    50 excitement
    51 failure
    52 fraction
    53 framework
    54 future
    55 group
    56 heart failure
    57 hemodynamic subtypes
    58 heterogeneous syndrome
    59 historical context
    60 homogeneous subtypes
    61 inflammation
    62 innovative analytical strategies
    63 machine
    64 mechanism
    65 method
    66 molecular basis
    67 need
    68 order
    69 paradigm
    70 pathophysiologic abnormalities
    71 phenomapping
    72 phenotype-based approach
    73 phenotyping
    74 pitfalls
    75 potential pitfalls
    76 reasons
    77 remodeling
    78 research groups
    79 researchers
    80 strategies
    81 subtypes
    82 such approaches
    83 syndrome
    84 systemic syndrome
    85 testing
    86 therapeutics
    87 treatment
    88 treatment of HFpEF
    89 trials
    90 underlying mechanism
    91 use
    92 ventricular remodeling
    93 years
    94 schema:name The future of heart failure with preserved ejection fraction
    95 schema:pagination 308-323
    96 schema:productId N55ad7a1ac07a434399a07a45332e37b8
    97 Nbcbae61938c947e0abbd0a94fe483bc7
    98 Ncbb05caf99b941b082efa079d578fec4
    99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149064293
    100 https://doi.org/10.1007/s00059-022-05124-8
    101 schema:sdDatePublished 2022-11-24T21:09
    102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    103 schema:sdPublisher N4dc354bb3753433bb8815364558e7b86
    104 schema:url https://doi.org/10.1007/s00059-022-05124-8
    105 sgo:license sg:explorer/license/
    106 sgo:sdDataset articles
    107 rdf:type schema:ScholarlyArticle
    108 N0e9a8212683041a1a0977be9e80b73a0 schema:volumeNumber 47
    109 rdf:type schema:PublicationVolume
    110 N0f962d81dbc747a6bdc13f5421720a8a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Phenotype
    112 rdf:type schema:DefinedTerm
    113 N4dc354bb3753433bb8815364558e7b86 schema:name Springer Nature - SN SciGraph project
    114 rdf:type schema:Organization
    115 N50554edd4f5141bfb252286c961215dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Ventricular Remodeling
    117 rdf:type schema:DefinedTerm
    118 N55ad7a1ac07a434399a07a45332e37b8 schema:name dimensions_id
    119 schema:value pub.1149064293
    120 rdf:type schema:PropertyValue
    121 N58eb17cd6f964c1c82ba7100aa72fe13 rdf:first sg:person.01204024671.16
    122 rdf:rest Neaaca2f3b9ad41359d42e50b3113f193
    123 N661bd8f332484efba02d0e0107a97487 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Ventricular Function, Left
    125 rdf:type schema:DefinedTerm
    126 N70c8c50a9ada454abcf6d634746a868c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Syndrome
    128 rdf:type schema:DefinedTerm
    129 N8e95c1935ef74877b5d65e6c24bc9f67 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Humans
    131 rdf:type schema:DefinedTerm
    132 Nbcbae61938c947e0abbd0a94fe483bc7 schema:name doi
    133 schema:value 10.1007/s00059-022-05124-8
    134 rdf:type schema:PropertyValue
    135 Ncbb05caf99b941b082efa079d578fec4 schema:name pubmed_id
    136 schema:value 35767073
    137 rdf:type schema:PropertyValue
    138 Ncf7fcca84e4e4815bae4250595bff5ad schema:issueNumber 4
    139 rdf:type schema:PublicationIssue
    140 Ndfb36512f46c4227b8cef92256339107 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Heart Failure
    142 rdf:type schema:DefinedTerm
    143 Ne7a57f47ac8e4030879b80b081c6ca1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Hemodynamics
    145 rdf:type schema:DefinedTerm
    146 Neaaca2f3b9ad41359d42e50b3113f193 rdf:first sg:person.016012163307.51
    147 rdf:rest rdf:nil
    148 Nfb14d1dced5d4a3d87f9e8ec277e3d09 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Stroke Volume
    150 rdf:type schema:DefinedTerm
    151 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    152 schema:name Medical and Health Sciences
    153 rdf:type schema:DefinedTerm
    154 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
    155 schema:name Cardiorespiratory Medicine and Haematology
    156 rdf:type schema:DefinedTerm
    157 sg:grant.2543248 http://pending.schema.org/fundedItem sg:pub.10.1007/s00059-022-05124-8
    158 rdf:type schema:MonetaryGrant
    159 sg:grant.4244665 http://pending.schema.org/fundedItem sg:pub.10.1007/s00059-022-05124-8
    160 rdf:type schema:MonetaryGrant
    161 sg:grant.7614172 http://pending.schema.org/fundedItem sg:pub.10.1007/s00059-022-05124-8
    162 rdf:type schema:MonetaryGrant
    163 sg:grant.8554857 http://pending.schema.org/fundedItem sg:pub.10.1007/s00059-022-05124-8
    164 rdf:type schema:MonetaryGrant
    165 sg:grant.9848956 http://pending.schema.org/fundedItem sg:pub.10.1007/s00059-022-05124-8
    166 rdf:type schema:MonetaryGrant
    167 sg:journal.1087175 schema:issn 0340-9937
    168 1615-6692
    169 schema:name Herz
    170 schema:publisher Springer Nature
    171 rdf:type schema:Periodical
    172 sg:person.01204024671.16 schema:affiliation grid-institutes:grid.452396.f
    173 schema:familyName Heinzel
    174 schema:givenName Frank R.
    175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204024671.16
    176 rdf:type schema:Person
    177 sg:person.016012163307.51 schema:affiliation grid-institutes:grid.16753.36
    178 schema:familyName Shah
    179 schema:givenName Sanjiv J.
    180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016012163307.51
    181 rdf:type schema:Person
    182 sg:pub.10.1007/s11886-016-0802-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046102801
    183 https://doi.org/10.1007/s11886-016-0802-1
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/s12265-017-9739-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1084034840
    186 https://doi.org/10.1007/s12265-017-9739-z
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/s12265-017-9752-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085865113
    189 https://doi.org/10.1007/s12265-017-9752-2
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/s12265-017-9759-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090357656
    192 https://doi.org/10.1007/s12265-017-9759-8
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/s41440-019-0216-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113185054
    195 https://doi.org/10.1038/s41440-019-0216-8
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/s41467-021-22876-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1137913850
    198 https://doi.org/10.1038/s41467-021-22876-9
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/s41467-021-22877-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1137926338
    201 https://doi.org/10.1038/s41467-021-22877-8
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/s41569-020-00480-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134472590
    204 https://doi.org/10.1038/s41569-020-00480-6
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/s41569-020-0363-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125986025
    207 https://doi.org/10.1038/s41569-020-0363-2
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/s41586-021-04177-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1143722489
    210 https://doi.org/10.1038/s41586-021-04177-9
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/s41598-019-46873-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1118099143
    213 https://doi.org/10.1038/s41598-019-46873-7
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/s41598-021-84133-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135823509
    216 https://doi.org/10.1038/s41598-021-84133-9
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1186/s12933-021-01242-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135467600
    219 https://doi.org/10.1186/s12933-021-01242-5
    220 rdf:type schema:CreativeWork
    221 grid-institutes:grid.16753.36 schema:alternateName Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
    222 schema:name Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
    223 rdf:type schema:Organization
    224 grid-institutes:grid.452396.f schema:alternateName Partner Site Berlin, Deutsches Zentrum für Herz-Kreislauf-Forschung eV, Berlin, Germany
    225 schema:name Medizinische Klinik mit Schwerpunkt Kardiologie, Charité – Universitätsmedizin, Campus Virchow-Klinikum, Berlin, Germany
    226 Partner Site Berlin, Deutsches Zentrum für Herz-Kreislauf-Forschung eV, Berlin, Germany
    227 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...