Elektrophysiologische Eigenschaften von Stammzellen View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-04

AUTHORS

Ursula Ravens

ABSTRACT

New concepts for treatment of myocardial infarction include the implantation of adult stem cells for regeneration of damaged muscle tissue. Several clinical trials have demonstrated a small, but significant improvement of ventricular function. Transdifferentiation of stem cells into cardiomyocytes, formation of new vessels and paracrine factors have been discussed as putative mechanisms for the therapeutic effect. Several types of stem cells have been used clinically including myoblasts derived from skeletal muscle satellite cells, bone marrow-derived stem cells or blood-derived mononuclear progenitor cells. In addition, multiple organs were shown to contain a small number of stem cells that could differentiate into cardiomyocytes. Embryonic stem cells differentiate into spontaneously beating cells that have varying electrophysiological properties. Their action potentials resemble those of cardiac pacemaker cell, atrial or ventricular myocytes (Figure 1) suggesting true differentiation into cardiomyocytes. Beating cells derived from a newly described population of skeletal muscle-derived cells ("skeletal precursors of cardiomyocytes" [SPOCs]) also exhibit spontaneous action potentials, however, unlike cardiac pacemaker cells, their electrical activity is suppressed with the sodium channel blocker tetrodotoxin (Figure 2). Undifferentiated bone marrow-derived mesenchymal stem cells are not electrically excitable. Nevertheless, they express functional ion channels like L-type Ca(2+) channels, albeit not in every cell. Co-culturing stem cells with neonatal rat ventricular myocytes induces good electrical contacts between cells via gap junction formation. Excitatory wave fronts spread evenly in the co-culture. By contrast, gap junctions fail to form when myoblasts are co-cultured with neonatal cardiomyocytes and reentry arrhythmias develop. This pathomechanism could serve as an explanation for the enhanced clinical risk of arrhythmia after transplantation of myoblasts into the infarcted hearts. More... »

PAGES

123-126

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00059-006-2793-y

DOI

http://dx.doi.org/10.1007/s00059-006-2793-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032504608

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16738835


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Action Potentials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals, Newborn", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Differentiation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cells, Cultured", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coculture Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrophysiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gap Junctions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart Failure", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Immunohistochemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myoblasts, Skeletal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardial Contraction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardial Infarction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocytes, Cardiac", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rats", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regeneration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stem Cell Transplantation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stem Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tissue Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "TU Dresden", 
          "id": "https://www.grid.ac/institutes/grid.4488.0", 
          "name": [
            "Institut f\u00fcr Pharmakologie und Toxikologie, Medizinische Fakult\u00e4t der TU Dresden, Dresden", 
            "Institut f\u00fcr Pharmakologie und Toxikologie, Medizinische Fakult\u00e4t Carl Gustav Carus, Technische Universit\u00e4t Dresden, Fetscherstra\u00dfe 74, 01307, Dresden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ravens", 
        "givenName": "Ursula", 
        "id": "sg:person.01334773623.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334773623.52"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2006-04", 
    "datePublishedReg": "2006-04-01", 
    "description": "New concepts for treatment of myocardial infarction include the implantation of adult stem cells for regeneration of damaged muscle tissue. Several clinical trials have demonstrated a small, but significant improvement of ventricular function. Transdifferentiation of stem cells into cardiomyocytes, formation of new vessels and paracrine factors have been discussed as putative mechanisms for the therapeutic effect. Several types of stem cells have been used clinically including myoblasts derived from skeletal muscle satellite cells, bone marrow-derived stem cells or blood-derived mononuclear progenitor cells. In addition, multiple organs were shown to contain a small number of stem cells that could differentiate into cardiomyocytes. Embryonic stem cells differentiate into spontaneously beating cells that have varying electrophysiological properties. Their action potentials resemble those of cardiac pacemaker cell, atrial or ventricular myocytes (Figure 1) suggesting true differentiation into cardiomyocytes. Beating cells derived from a newly described population of skeletal muscle-derived cells (\"skeletal precursors of cardiomyocytes\" [SPOCs]) also exhibit spontaneous action potentials, however, unlike cardiac pacemaker cells, their electrical activity is suppressed with the sodium channel blocker tetrodotoxin (Figure 2). Undifferentiated bone marrow-derived mesenchymal stem cells are not electrically excitable. Nevertheless, they express functional ion channels like L-type Ca(2+) channels, albeit not in every cell. Co-culturing stem cells with neonatal rat ventricular myocytes induces good electrical contacts between cells via gap junction formation. Excitatory wave fronts spread evenly in the co-culture. By contrast, gap junctions fail to form when myoblasts are co-cultured with neonatal cardiomyocytes and reentry arrhythmias develop. This pathomechanism could serve as an explanation for the enhanced clinical risk of arrhythmia after transplantation of myoblasts into the infarcted hearts.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00059-006-2793-y", 
    "inLanguage": [
      "de"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1087175", 
        "issn": [
          "0340-9937", 
          "1615-6692"
        ], 
        "name": "Herz", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "name": "Elektrophysiologische Eigenschaften von Stammzellen", 
    "pagination": "123-126", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9ad965b62a3cfacd48c4657b73d02edc97510cefb5bad00737dec02b54d7c650"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16738835"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7801231"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00059-006-2793-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032504608"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00059-006-2793-y", 
      "https://app.dimensions.ai/details/publication/pub.1032504608"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000489.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00059-006-2793-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00059-006-2793-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00059-006-2793-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00059-006-2793-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00059-006-2793-y'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      20 PREDICATES      50 URIs      42 LITERALS      30 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00059-006-2793-y schema:about N115350eba584491b978215045a44b319
2 N19c5649bf75244409f1ae6813bb71c19
3 N32906e94183a4daa8eadb768a1c930b5
4 N428831b2229b415bb44f9d230b05de43
5 N4ab5001030964808b43a52d5bf37c7f2
6 N53b89dd8cc6a44cdba39d12e64953537
7 N5be0bc6787824d0dace683be750d27bd
8 N60bd07f8e5034223b738d812ac4a9f34
9 N66589923f53c4a8c92ebb10ca5e861b2
10 N6e512aecd847462c828dc65cfba06832
11 N897804c804c841e8a41194982eb8e85d
12 N8d571c9362b34f44b0323c83696241dc
13 N95cbb03fa95345a4af95a58b5401a423
14 N9c1bb8a789814b1498770285830f01c8
15 N9e39021da44941e5838bd236f870ddf4
16 Naa2a4a16c3334fc0b314375c53489e57
17 Nb13ebcd690fe4296a277a2331d47f9c9
18 Nb4cd0e4a9edb4979851c3ca7e94326cb
19 Nd0793d5fd16649b2ba5e56238bcb4645
20 Nd46a79dc34b14c1087fb57e0fc56011d
21 Nd7d61ed10c19425c8ea63a9dbf3a317e
22 anzsrc-for:11
23 anzsrc-for:1102
24 schema:author Nb4534e7eb2754187b92bef533669960c
25 schema:datePublished 2006-04
26 schema:datePublishedReg 2006-04-01
27 schema:description New concepts for treatment of myocardial infarction include the implantation of adult stem cells for regeneration of damaged muscle tissue. Several clinical trials have demonstrated a small, but significant improvement of ventricular function. Transdifferentiation of stem cells into cardiomyocytes, formation of new vessels and paracrine factors have been discussed as putative mechanisms for the therapeutic effect. Several types of stem cells have been used clinically including myoblasts derived from skeletal muscle satellite cells, bone marrow-derived stem cells or blood-derived mononuclear progenitor cells. In addition, multiple organs were shown to contain a small number of stem cells that could differentiate into cardiomyocytes. Embryonic stem cells differentiate into spontaneously beating cells that have varying electrophysiological properties. Their action potentials resemble those of cardiac pacemaker cell, atrial or ventricular myocytes (Figure 1) suggesting true differentiation into cardiomyocytes. Beating cells derived from a newly described population of skeletal muscle-derived cells ("skeletal precursors of cardiomyocytes" [SPOCs]) also exhibit spontaneous action potentials, however, unlike cardiac pacemaker cells, their electrical activity is suppressed with the sodium channel blocker tetrodotoxin (Figure 2). Undifferentiated bone marrow-derived mesenchymal stem cells are not electrically excitable. Nevertheless, they express functional ion channels like L-type Ca(2+) channels, albeit not in every cell. Co-culturing stem cells with neonatal rat ventricular myocytes induces good electrical contacts between cells via gap junction formation. Excitatory wave fronts spread evenly in the co-culture. By contrast, gap junctions fail to form when myoblasts are co-cultured with neonatal cardiomyocytes and reentry arrhythmias develop. This pathomechanism could serve as an explanation for the enhanced clinical risk of arrhythmia after transplantation of myoblasts into the infarcted hearts.
28 schema:genre research_article
29 schema:inLanguage de
30 schema:isAccessibleForFree false
31 schema:isPartOf N616f40453016449fbba5bf50e8eea030
32 N811fbccb65be44b986ba33d99a6cbc62
33 sg:journal.1087175
34 schema:name Elektrophysiologische Eigenschaften von Stammzellen
35 schema:pagination 123-126
36 schema:productId N246fa978cb554647a2124f9f81b75808
37 N4a6d12fca874479e84b229733abb10fc
38 N560f205cb9b345b79eea4f2bb4daea9a
39 N7fb3b55e9361495ab30c344dc2b1a4e1
40 Naea20669855b4aa997710944003fcabe
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032504608
42 https://doi.org/10.1007/s00059-006-2793-y
43 schema:sdDatePublished 2019-04-10T20:41
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N1b59ea22a2684fe4a18cd0f9d7c0871d
46 schema:url http://link.springer.com/10.1007/s00059-006-2793-y
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N115350eba584491b978215045a44b319 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
51 schema:name Tissue Engineering
52 rdf:type schema:DefinedTerm
53 N19c5649bf75244409f1ae6813bb71c19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
54 schema:name Myocytes, Cardiac
55 rdf:type schema:DefinedTerm
56 N1b59ea22a2684fe4a18cd0f9d7c0871d schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N246fa978cb554647a2124f9f81b75808 schema:name pubmed_id
59 schema:value 16738835
60 rdf:type schema:PropertyValue
61 N32906e94183a4daa8eadb768a1c930b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Cell Differentiation
63 rdf:type schema:DefinedTerm
64 N428831b2229b415bb44f9d230b05de43 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Stem Cell Transplantation
66 rdf:type schema:DefinedTerm
67 N4a6d12fca874479e84b229733abb10fc schema:name readcube_id
68 schema:value 9ad965b62a3cfacd48c4657b73d02edc97510cefb5bad00737dec02b54d7c650
69 rdf:type schema:PropertyValue
70 N4ab5001030964808b43a52d5bf37c7f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Humans
72 rdf:type schema:DefinedTerm
73 N53b89dd8cc6a44cdba39d12e64953537 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Coculture Techniques
75 rdf:type schema:DefinedTerm
76 N560f205cb9b345b79eea4f2bb4daea9a schema:name dimensions_id
77 schema:value pub.1032504608
78 rdf:type schema:PropertyValue
79 N5be0bc6787824d0dace683be750d27bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Heart Failure
81 rdf:type schema:DefinedTerm
82 N60bd07f8e5034223b738d812ac4a9f34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Regeneration
84 rdf:type schema:DefinedTerm
85 N616f40453016449fbba5bf50e8eea030 schema:volumeNumber 31
86 rdf:type schema:PublicationVolume
87 N66589923f53c4a8c92ebb10ca5e861b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Animals
89 rdf:type schema:DefinedTerm
90 N6e512aecd847462c828dc65cfba06832 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Rats
92 rdf:type schema:DefinedTerm
93 N7fb3b55e9361495ab30c344dc2b1a4e1 schema:name doi
94 schema:value 10.1007/s00059-006-2793-y
95 rdf:type schema:PropertyValue
96 N811fbccb65be44b986ba33d99a6cbc62 schema:issueNumber 2
97 rdf:type schema:PublicationIssue
98 N897804c804c841e8a41194982eb8e85d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Immunohistochemistry
100 rdf:type schema:DefinedTerm
101 N8d571c9362b34f44b0323c83696241dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Cells, Cultured
103 rdf:type schema:DefinedTerm
104 N95cbb03fa95345a4af95a58b5401a423 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Animals, Newborn
106 rdf:type schema:DefinedTerm
107 N9c1bb8a789814b1498770285830f01c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Stem Cells
109 rdf:type schema:DefinedTerm
110 N9e39021da44941e5838bd236f870ddf4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Myocardial Infarction
112 rdf:type schema:DefinedTerm
113 Naa2a4a16c3334fc0b314375c53489e57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Time Factors
115 rdf:type schema:DefinedTerm
116 Naea20669855b4aa997710944003fcabe schema:name nlm_unique_id
117 schema:value 7801231
118 rdf:type schema:PropertyValue
119 Nb13ebcd690fe4296a277a2331d47f9c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Myoblasts, Skeletal
121 rdf:type schema:DefinedTerm
122 Nb4534e7eb2754187b92bef533669960c rdf:first sg:person.01334773623.52
123 rdf:rest rdf:nil
124 Nb4cd0e4a9edb4979851c3ca7e94326cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Myocardial Contraction
126 rdf:type schema:DefinedTerm
127 Nd0793d5fd16649b2ba5e56238bcb4645 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Electrophysiology
129 rdf:type schema:DefinedTerm
130 Nd46a79dc34b14c1087fb57e0fc56011d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Gap Junctions
132 rdf:type schema:DefinedTerm
133 Nd7d61ed10c19425c8ea63a9dbf3a317e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Action Potentials
135 rdf:type schema:DefinedTerm
136 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
137 schema:name Medical and Health Sciences
138 rdf:type schema:DefinedTerm
139 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
140 schema:name Cardiorespiratory Medicine and Haematology
141 rdf:type schema:DefinedTerm
142 sg:journal.1087175 schema:issn 0340-9937
143 1615-6692
144 schema:name Herz
145 rdf:type schema:Periodical
146 sg:person.01334773623.52 schema:affiliation https://www.grid.ac/institutes/grid.4488.0
147 schema:familyName Ravens
148 schema:givenName Ursula
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334773623.52
150 rdf:type schema:Person
151 https://www.grid.ac/institutes/grid.4488.0 schema:alternateName TU Dresden
152 schema:name Institut für Pharmakologie und Toxikologie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden
153 Institut für Pharmakologie und Toxikologie, Medizinische Fakultät der TU Dresden, Dresden
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...