Was ist praktisch am mathematischen Wissen? View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-09

AUTHORS

Kerrin Klinger, Thomas Morel

ABSTRACT

This article investigates the notion of 'practical mathematics' and its evolution over the last third of the eighteenth and first third of the nineteenth century. Two detailed case studies, taken together, give a sense of both the richness and the difficulties of what practical knowledge could mean at the turn of the nineteenth century. After some preliminary remarks about the institutional context and the social status of practical mathematicians (actually mathematical practitioners) in the German regions the first case study is dedicated to the mining master Johann Andreas Scheidhauer (1718-1784). The biography of this previously unknown mathematical practitioner leads to an analysis of his writings and their reception, after which we analyze the diffusion of his work, most prominently through J. F. Lempe, professor of mathematics at the Freiberg mining academy. The second case study deals with a practitioner from the following generation: the architect Carl Friedrich Steiner (1774-1840), who lived in Weimar as a contemporary of Goethe. In a certain sense his textbook on Geometry descriptive reflects the consequences of the ongoing mathematisation, the status of mathematical knowledge for the training of young artisans and artists. Both case studies provide information about the historical understanding of practical mathematics. More... »

PAGES

267-299

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00048-018-0197-8

DOI

http://dx.doi.org/10.1007/s00048-018-0197-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106149987

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30109358


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Humboldt University of Berlin", 
          "id": "https://www.grid.ac/institutes/grid.7468.d", 
          "name": [
            "Helmholtz-Zentrum f\u00fcr Kulturtechnik, Humboldt-Universit\u00e4t zu Berlin, Unter den Linden\u00a06, 10099, Berlin, Deutschland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klinger", 
        "givenName": "Kerrin", 
        "id": "sg:person.013477357535.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013477357535.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Facult\u00e9 des Sciences Jean Perrin, Laboratoire de Math\u00e9matiques de Lens (LML, EA 2462), Rue Jean Souvraz SP\u00a018, 62307, Lens, Frankreich"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morel", 
        "givenName": "Thomas", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-658-10003-2_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009443481", 
          "https://doi.org/10.1007/978-3-658-10003-2_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9783110844900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037874510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-322-81035-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039564571", 
          "https://doi.org/10.1007/978-3-322-81035-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-322-81035-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039564571", 
          "https://doi.org/10.1007/978-3-322-81035-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4000/philosophiascientiae.1089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071854161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/9789004349261_008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092155629"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09", 
    "datePublishedReg": "2018-09-01", 
    "description": "This article investigates the notion of 'practical mathematics' and its evolution over the last third of the eighteenth and first third of the nineteenth century. Two detailed case studies, taken together, give a\u00a0sense of both the richness and the difficulties of what practical knowledge could mean at the turn of the nineteenth century. After some preliminary remarks about the institutional context and the social status of practical mathematicians (actually mathematical practitioners) in the German regions the first case study is dedicated to the mining master Johann Andreas Scheidhauer (1718-1784). The biography of this previously unknown mathematical practitioner leads to an analysis of his writings and their reception, after which we analyze the diffusion of his work, most prominently through J.\u00a0F.\u00a0Lempe, professor of mathematics at the Freiberg mining academy. The second case study deals with a\u00a0practitioner from the following generation: the architect Carl Friedrich Steiner (1774-1840), who lived in Weimar as a\u00a0contemporary of Goethe. In a\u00a0certain sense his textbook on Geometry descriptive reflects the consequences of the ongoing mathematisation, the status of mathematical knowledge for the training of young artisans and artists. Both case studies provide information about the historical understanding of practical mathematics.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00048-018-0197-8", 
    "inLanguage": [
      "de"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1016143", 
        "issn": [
          "0036-6978", 
          "1420-9144"
        ], 
        "name": "NTM Zeitschrift f\u00fcr Geschichte der Wissenschaften, Technik und Medizin", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "Was ist praktisch am mathematischen Wissen?", 
    "pagination": "267-299", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d85567112a2f9aeb7588a7face928af357ae3f84d67026e02f24f86d8b7bce23"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30109358"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0347631"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00048-018-0197-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106149987"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00048-018-0197-8", 
      "https://app.dimensions.ai/details/publication/pub.1106149987"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000509.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00048-018-0197-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00048-018-0197-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00048-018-0197-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00048-018-0197-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00048-018-0197-8'


 

This table displays all metadata directly associated to this object as RDF triples.

94 TRIPLES      21 PREDICATES      34 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00048-018-0197-8 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N789ea738affd4cd3b728fdb988bbfe0b
4 schema:citation sg:pub.10.1007/978-3-322-81035-9
5 sg:pub.10.1007/978-3-658-10003-2_6
6 https://doi.org/10.1163/9789004349261_008
7 https://doi.org/10.1515/9783110844900
8 https://doi.org/10.4000/philosophiascientiae.1089
9 schema:datePublished 2018-09
10 schema:datePublishedReg 2018-09-01
11 schema:description This article investigates the notion of 'practical mathematics' and its evolution over the last third of the eighteenth and first third of the nineteenth century. Two detailed case studies, taken together, give a sense of both the richness and the difficulties of what practical knowledge could mean at the turn of the nineteenth century. After some preliminary remarks about the institutional context and the social status of practical mathematicians (actually mathematical practitioners) in the German regions the first case study is dedicated to the mining master Johann Andreas Scheidhauer (1718-1784). The biography of this previously unknown mathematical practitioner leads to an analysis of his writings and their reception, after which we analyze the diffusion of his work, most prominently through J. F. Lempe, professor of mathematics at the Freiberg mining academy. The second case study deals with a practitioner from the following generation: the architect Carl Friedrich Steiner (1774-1840), who lived in Weimar as a contemporary of Goethe. In a certain sense his textbook on Geometry descriptive reflects the consequences of the ongoing mathematisation, the status of mathematical knowledge for the training of young artisans and artists. Both case studies provide information about the historical understanding of practical mathematics.
12 schema:genre research_article
13 schema:inLanguage de
14 schema:isAccessibleForFree false
15 schema:isPartOf N1fee1e8b586e4392bac55d80609a5eca
16 N57eb5220feaa425c84f6eaf392eef9f5
17 sg:journal.1016143
18 schema:name Was ist praktisch am mathematischen Wissen?
19 schema:pagination 267-299
20 schema:productId N13e51d5c63714d9cb665ed123b4b8daf
21 N3502e419df1e4699aba1d215ca2980d8
22 N6c1b3d123d0843e998bd12f10c49c403
23 Nc22933c659b24a8882a5604c4cba2e1e
24 Ncc4f354a9aa4471ca3514c3e8c432c2e
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106149987
26 https://doi.org/10.1007/s00048-018-0197-8
27 schema:sdDatePublished 2019-04-10T13:15
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher Nb6f473e4cba14d678ae41e976710a1d2
30 schema:url http://link.springer.com/10.1007%2Fs00048-018-0197-8
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N13e51d5c63714d9cb665ed123b4b8daf schema:name doi
35 schema:value 10.1007/s00048-018-0197-8
36 rdf:type schema:PropertyValue
37 N1fee1e8b586e4392bac55d80609a5eca schema:volumeNumber 26
38 rdf:type schema:PublicationVolume
39 N3502e419df1e4699aba1d215ca2980d8 schema:name nlm_unique_id
40 schema:value 0347631
41 rdf:type schema:PropertyValue
42 N462cb1c46e5841799a2c60eb24c057af schema:name Faculté des Sciences Jean Perrin, Laboratoire de Mathématiques de Lens (LML, EA 2462), Rue Jean Souvraz SP 18, 62307, Lens, Frankreich
43 rdf:type schema:Organization
44 N57eb5220feaa425c84f6eaf392eef9f5 schema:issueNumber 3
45 rdf:type schema:PublicationIssue
46 N6c1b3d123d0843e998bd12f10c49c403 schema:name dimensions_id
47 schema:value pub.1106149987
48 rdf:type schema:PropertyValue
49 N789ea738affd4cd3b728fdb988bbfe0b rdf:first sg:person.013477357535.22
50 rdf:rest Nc8ac5747ade942629284205c59c83297
51 N87b10cf3764e4ade9d8e74cb0de12f21 schema:affiliation N462cb1c46e5841799a2c60eb24c057af
52 schema:familyName Morel
53 schema:givenName Thomas
54 rdf:type schema:Person
55 Nb6f473e4cba14d678ae41e976710a1d2 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 Nc22933c659b24a8882a5604c4cba2e1e schema:name pubmed_id
58 schema:value 30109358
59 rdf:type schema:PropertyValue
60 Nc8ac5747ade942629284205c59c83297 rdf:first N87b10cf3764e4ade9d8e74cb0de12f21
61 rdf:rest rdf:nil
62 Ncc4f354a9aa4471ca3514c3e8c432c2e schema:name readcube_id
63 schema:value d85567112a2f9aeb7588a7face928af357ae3f84d67026e02f24f86d8b7bce23
64 rdf:type schema:PropertyValue
65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
66 schema:name Mathematical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
69 schema:name Pure Mathematics
70 rdf:type schema:DefinedTerm
71 sg:journal.1016143 schema:issn 0036-6978
72 1420-9144
73 schema:name NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin
74 rdf:type schema:Periodical
75 sg:person.013477357535.22 schema:affiliation https://www.grid.ac/institutes/grid.7468.d
76 schema:familyName Klinger
77 schema:givenName Kerrin
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013477357535.22
79 rdf:type schema:Person
80 sg:pub.10.1007/978-3-322-81035-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039564571
81 https://doi.org/10.1007/978-3-322-81035-9
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/978-3-658-10003-2_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009443481
84 https://doi.org/10.1007/978-3-658-10003-2_6
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1163/9789004349261_008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092155629
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1515/9783110844900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037874510
89 rdf:type schema:CreativeWork
90 https://doi.org/10.4000/philosophiascientiae.1089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071854161
91 rdf:type schema:CreativeWork
92 https://www.grid.ac/institutes/grid.7468.d schema:alternateName Humboldt University of Berlin
93 schema:name Helmholtz-Zentrum für Kulturtechnik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Deutschland
94 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...