4D-QSAR studies of CB2 cannabinoid receptor inverse agonists: a comparison to 3D-QSAR View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Houpan Zhang, Qiaoli Lv, Weidong Xu, Xiaoping Lai, Ya Liu, Guogang Tu

ABSTRACT

Over the years QSAR methods have developed from 2D-QSAR to more complex 4D-QSAR which features freedom of alignment and conformational flexibility of individual ligands. This approach takes advantage of conformational ensemble profile (CEP) generated for individual compounds by molecular dynamics simulations. In present study, the 4D-QSAR methods called LQTAgrid-QSAR has been performed on a series of potent CB2 cannabinoid receptor inverse agonists. Step-wise method was used to select the most informative variables. Partial least squares (PLS) and multiple linear regression (MLR) methods were used for constructing the regression models. Y-randomization and leave-N-out cross-validation (LNO) were carried out to verify the robustness of the model and to analysis of the independent test set. Best 4D-QSAR model provided the following statistics: R2 = 0.862, q2LOO = 0.737, q2LNO = 0.719, R2Pred = 0.884 (PLS) and R2 = 0.863, q2LOO = 0.771, q2LNO = 0.761, R2Pred = 0.877 (MLR). The comparison of the 4D-QSAR to 3D-QSAR was performed. More... »

PAGES

498-504

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00044-019-02303-x

DOI

http://dx.doi.org/10.1007/s00044-019-02303-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112074945


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nanchang University", 
          "id": "https://www.grid.ac/institutes/grid.260463.5", 
          "name": [
            "Department of Medicinal Chemistry, School of Pharmaceutical Science, NanChang University, 330006, Nanchang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Houpan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jiangxi Cancer Hospital", 
          "id": "https://www.grid.ac/institutes/grid.452533.6", 
          "name": [
            "Department of Science and Education, JiangXi Key Laboratory of Translational Cancer Research, JiangXi Cancer Hospital, 330029, Nanchang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lv", 
        "givenName": "Qiaoli", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanchang University", 
          "id": "https://www.grid.ac/institutes/grid.260463.5", 
          "name": [
            "Department of Medicinal Chemistry, School of Pharmaceutical Science, NanChang University, 330006, Nanchang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Weidong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanchang University", 
          "id": "https://www.grid.ac/institutes/grid.260463.5", 
          "name": [
            "Department of Medicinal Chemistry, School of Pharmaceutical Science, NanChang University, 330006, Nanchang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lai", 
        "givenName": "Xiaoping", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanchang University", 
          "id": "https://www.grid.ac/institutes/grid.260463.5", 
          "name": [
            "Department of Medicinal Chemistry, School of Pharmaceutical Science, NanChang University, 330006, Nanchang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Ya", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanchang University", 
          "id": "https://www.grid.ac/institutes/grid.260463.5", 
          "name": [
            "Department of Medicinal Chemistry, School of Pharmaceutical Science, NanChang University, 330006, Nanchang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tu", 
        "givenName": "Guogang", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/jcc.20084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008225564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10822-011-9462-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009013757", 
          "https://doi.org/10.1007/s10822-011-9462-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11030-011-9340-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010347231", 
          "https://doi.org/10.1007/s11030-011-9340-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10610278.2011.581281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011196913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.20291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013759612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.20291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013759612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/365061a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020160837", 
          "https://doi.org/10.1038/365061a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/molecules15053281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020465666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/molecules15053281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020465666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd1495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021110356", 
          "https://doi.org/10.1038/nrd1495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd1495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021110356", 
          "https://doi.org/10.1038/nrd1495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1093-3263(01)00123-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026397852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejmech.2016.02.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029091977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1025366721142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033482751", 
          "https://doi.org/10.1023/a:1025366721142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.smim.2014.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033728692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/me.2015-1062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034215224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/346561a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034682253", 
          "https://doi.org/10.1038/346561a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1590/s0103-50532009000400021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034745683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00894-010-0684-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036202399", 
          "https://doi.org/10.1007/s00894-010-0684-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00894-010-0684-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036202399", 
          "https://doi.org/10.1007/s00894-010-0684-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.23361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039182869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-7439(01)00155-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041387192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.1080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050758480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c1md00044f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053473574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci900014f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055404679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci900014f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055404679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja9718937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055867898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja9718937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055867898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.448118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058026138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.464397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058042407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1124/pr.54.2.161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062438734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1573409911666150617113933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069211259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078053539", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00044-018-2219-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106003580", 
          "https://doi.org/10.1007/s00044-018-2219-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Over the years QSAR methods have developed from 2D-QSAR to more complex 4D-QSAR which features freedom of alignment and conformational flexibility of individual ligands. This approach takes advantage of conformational ensemble profile (CEP) generated for individual compounds by molecular dynamics simulations. In present study, the 4D-QSAR methods called LQTAgrid-QSAR has been performed on a series of potent CB2 cannabinoid receptor inverse agonists. Step-wise method was used to select the most informative variables. Partial least squares (PLS) and multiple linear regression (MLR) methods were used for constructing the regression models. Y-randomization and leave-N-out cross-validation (LNO) were carried out to verify the robustness of the model and to analysis of the independent test set. Best 4D-QSAR model provided the following statistics: R2 = 0.862, q2LOO = 0.737, q2LNO = 0.719, R2Pred = 0.884 (PLS) and R2 = 0.863, q2LOO = 0.771, q2LNO = 0.761, R2Pred = 0.877 (MLR). The comparison of the 4D-QSAR to 3D-QSAR was performed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00044-019-02303-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1102690", 
        "issn": [
          "1054-2523", 
          "1554-8120"
        ], 
        "name": "Medicinal Chemistry Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "4D-QSAR studies of CB2 cannabinoid receptor inverse agonists: a comparison to 3D-QSAR", 
    "pagination": "498-504", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d4a77d4208245edf865d651b32cbdea9b5f6ce386d3453e90c2bdd0f38373857"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00044-019-02303-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112074945"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00044-019-02303-x", 
      "https://app.dimensions.ai/details/publication/pub.1112074945"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78965_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00044-019-02303-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00044-019-02303-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00044-019-02303-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00044-019-02303-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00044-019-02303-x'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00044-019-02303-x schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N0767f8044bb042ff8b5eb51c65147044
4 schema:citation sg:pub.10.1007/s00044-018-2219-4
5 sg:pub.10.1007/s00894-010-0684-x
6 sg:pub.10.1007/s10822-011-9462-9
7 sg:pub.10.1007/s11030-011-9340-3
8 sg:pub.10.1023/a:1025366721142
9 sg:pub.10.1038/346561a0
10 sg:pub.10.1038/365061a0
11 sg:pub.10.1038/nrd1495
12 https://app.dimensions.ai/details/publication/pub.1078053539
13 https://doi.org/10.1002/jcc.1080
14 https://doi.org/10.1002/jcc.20084
15 https://doi.org/10.1002/jcc.20291
16 https://doi.org/10.1002/jcc.23361
17 https://doi.org/10.1016/j.ejmech.2016.02.032
18 https://doi.org/10.1016/j.smim.2014.04.002
19 https://doi.org/10.1016/s0169-7439(01)00155-1
20 https://doi.org/10.1016/s1093-3263(01)00123-1
21 https://doi.org/10.1021/ci900014f
22 https://doi.org/10.1021/ja9718937
23 https://doi.org/10.1039/c1md00044f
24 https://doi.org/10.1063/1.448118
25 https://doi.org/10.1063/1.464397
26 https://doi.org/10.1080/10610278.2011.581281
27 https://doi.org/10.1124/pr.54.2.161
28 https://doi.org/10.1210/me.2015-1062
29 https://doi.org/10.1590/s0103-50532009000400021
30 https://doi.org/10.2174/1573409911666150617113933
31 https://doi.org/10.3390/molecules15053281
32 schema:datePublished 2019-04
33 schema:datePublishedReg 2019-04-01
34 schema:description Over the years QSAR methods have developed from 2D-QSAR to more complex 4D-QSAR which features freedom of alignment and conformational flexibility of individual ligands. This approach takes advantage of conformational ensemble profile (CEP) generated for individual compounds by molecular dynamics simulations. In present study, the 4D-QSAR methods called LQTAgrid-QSAR has been performed on a series of potent CB2 cannabinoid receptor inverse agonists. Step-wise method was used to select the most informative variables. Partial least squares (PLS) and multiple linear regression (MLR) methods were used for constructing the regression models. Y-randomization and leave-N-out cross-validation (LNO) were carried out to verify the robustness of the model and to analysis of the independent test set. Best 4D-QSAR model provided the following statistics: R2 = 0.862, q2LOO = 0.737, q2LNO = 0.719, R2Pred = 0.884 (PLS) and R2 = 0.863, q2LOO = 0.771, q2LNO = 0.761, R2Pred = 0.877 (MLR). The comparison of the 4D-QSAR to 3D-QSAR was performed.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N0c7631ba4d4743cc9ceadffaa93845ed
39 N94b485631087409c87e254f818be2ab2
40 sg:journal.1102690
41 schema:name 4D-QSAR studies of CB2 cannabinoid receptor inverse agonists: a comparison to 3D-QSAR
42 schema:pagination 498-504
43 schema:productId N60162866b2c342f6a58989de3b8f957a
44 Na5b779a1eeee427d855cbbe8f05cde54
45 Ncb72e1a5f5ea4bfd9a4cd292e2a34d53
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112074945
47 https://doi.org/10.1007/s00044-019-02303-x
48 schema:sdDatePublished 2019-04-11T13:20
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Nd826d2a1346f4c13acdea410d173dbb6
51 schema:url https://link.springer.com/10.1007%2Fs00044-019-02303-x
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N0767f8044bb042ff8b5eb51c65147044 rdf:first N23a100e2f6ef44aca6b44d39ec99f20e
56 rdf:rest N569f74745a6249bb957c5969a46d2019
57 N0c7631ba4d4743cc9ceadffaa93845ed schema:volumeNumber 28
58 rdf:type schema:PublicationVolume
59 N23a100e2f6ef44aca6b44d39ec99f20e schema:affiliation https://www.grid.ac/institutes/grid.260463.5
60 schema:familyName Zhang
61 schema:givenName Houpan
62 rdf:type schema:Person
63 N2b1905e6a2ec4ea3bb881b05f5b6e0da rdf:first N807667cc7feb4a708882d4528348bc6d
64 rdf:rest rdf:nil
65 N2d041be6832941aa95b4a9002af2bceb schema:affiliation https://www.grid.ac/institutes/grid.260463.5
66 schema:familyName Xu
67 schema:givenName Weidong
68 rdf:type schema:Person
69 N51b123656bcb400e9f0adb80cc5c7b74 rdf:first Nac7738c9a6cc429e8d09831bfdeb103e
70 rdf:rest N2b1905e6a2ec4ea3bb881b05f5b6e0da
71 N569f74745a6249bb957c5969a46d2019 rdf:first N5c6217b955614a42b452befa58023371
72 rdf:rest N839d98bb3edb4cc8842ab53f2237ec8e
73 N5c6217b955614a42b452befa58023371 schema:affiliation https://www.grid.ac/institutes/grid.452533.6
74 schema:familyName Lv
75 schema:givenName Qiaoli
76 rdf:type schema:Person
77 N60162866b2c342f6a58989de3b8f957a schema:name dimensions_id
78 schema:value pub.1112074945
79 rdf:type schema:PropertyValue
80 N6b3297b3f650455dbe16cb8f02afb594 rdf:first Nbde94a1d37604b1aa489e7b0a575ab2d
81 rdf:rest N51b123656bcb400e9f0adb80cc5c7b74
82 N807667cc7feb4a708882d4528348bc6d schema:affiliation https://www.grid.ac/institutes/grid.260463.5
83 schema:familyName Tu
84 schema:givenName Guogang
85 rdf:type schema:Person
86 N839d98bb3edb4cc8842ab53f2237ec8e rdf:first N2d041be6832941aa95b4a9002af2bceb
87 rdf:rest N6b3297b3f650455dbe16cb8f02afb594
88 N94b485631087409c87e254f818be2ab2 schema:issueNumber 4
89 rdf:type schema:PublicationIssue
90 Na5b779a1eeee427d855cbbe8f05cde54 schema:name doi
91 schema:value 10.1007/s00044-019-02303-x
92 rdf:type schema:PropertyValue
93 Nac7738c9a6cc429e8d09831bfdeb103e schema:affiliation https://www.grid.ac/institutes/grid.260463.5
94 schema:familyName Liu
95 schema:givenName Ya
96 rdf:type schema:Person
97 Nbde94a1d37604b1aa489e7b0a575ab2d schema:affiliation https://www.grid.ac/institutes/grid.260463.5
98 schema:familyName Lai
99 schema:givenName Xiaoping
100 rdf:type schema:Person
101 Ncb72e1a5f5ea4bfd9a4cd292e2a34d53 schema:name readcube_id
102 schema:value d4a77d4208245edf865d651b32cbdea9b5f6ce386d3453e90c2bdd0f38373857
103 rdf:type schema:PropertyValue
104 Nd826d2a1346f4c13acdea410d173dbb6 schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
107 schema:name Mathematical Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
110 schema:name Statistics
111 rdf:type schema:DefinedTerm
112 sg:journal.1102690 schema:issn 1054-2523
113 1554-8120
114 schema:name Medicinal Chemistry Research
115 rdf:type schema:Periodical
116 sg:pub.10.1007/s00044-018-2219-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106003580
117 https://doi.org/10.1007/s00044-018-2219-4
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s00894-010-0684-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036202399
120 https://doi.org/10.1007/s00894-010-0684-x
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s10822-011-9462-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009013757
123 https://doi.org/10.1007/s10822-011-9462-9
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s11030-011-9340-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010347231
126 https://doi.org/10.1007/s11030-011-9340-3
127 rdf:type schema:CreativeWork
128 sg:pub.10.1023/a:1025366721142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033482751
129 https://doi.org/10.1023/a:1025366721142
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/346561a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034682253
132 https://doi.org/10.1038/346561a0
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/365061a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020160837
135 https://doi.org/10.1038/365061a0
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/nrd1495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021110356
138 https://doi.org/10.1038/nrd1495
139 rdf:type schema:CreativeWork
140 https://app.dimensions.ai/details/publication/pub.1078053539 schema:CreativeWork
141 https://doi.org/10.1002/jcc.1080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050758480
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1002/jcc.20084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008225564
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1002/jcc.20291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013759612
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1002/jcc.23361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039182869
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.ejmech.2016.02.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029091977
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.smim.2014.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033728692
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/s0169-7439(01)00155-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041387192
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/s1093-3263(01)00123-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026397852
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1021/ci900014f schema:sameAs https://app.dimensions.ai/details/publication/pub.1055404679
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1021/ja9718937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055867898
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1039/c1md00044f schema:sameAs https://app.dimensions.ai/details/publication/pub.1053473574
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1063/1.448118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058026138
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1063/1.464397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058042407
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1080/10610278.2011.581281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011196913
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1124/pr.54.2.161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062438734
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1210/me.2015-1062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034215224
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1590/s0103-50532009000400021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034745683
174 rdf:type schema:CreativeWork
175 https://doi.org/10.2174/1573409911666150617113933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069211259
176 rdf:type schema:CreativeWork
177 https://doi.org/10.3390/molecules15053281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020465666
178 rdf:type schema:CreativeWork
179 https://www.grid.ac/institutes/grid.260463.5 schema:alternateName Nanchang University
180 schema:name Department of Medicinal Chemistry, School of Pharmaceutical Science, NanChang University, 330006, Nanchang, China
181 rdf:type schema:Organization
182 https://www.grid.ac/institutes/grid.452533.6 schema:alternateName Jiangxi Cancer Hospital
183 schema:name Department of Science and Education, JiangXi Key Laboratory of Translational Cancer Research, JiangXi Cancer Hospital, 330029, Nanchang, China
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...