4D-QSAR studies of CB2 cannabinoid receptor inverse agonists: a comparison to 3D-QSAR View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-11

AUTHORS

Houpan Zhang, Qiaoli Lv, Weidong Xu, Xiaoping Lai, Ya Liu, Guogang Tu

ABSTRACT

Over the years QSAR methods have developed from 2D-QSAR to more complex 4D-QSAR which features freedom of alignment and conformational flexibility of individual ligands. This approach takes advantage of conformational ensemble profile (CEP) generated for individual compounds by molecular dynamics simulations. In present study, the 4D-QSAR methods called LQTAgrid-QSAR has been performed on a series of potent CB2 cannabinoid receptor inverse agonists. Step-wise method was used to select the most informative variables. Partial least squares (PLS) and multiple linear regression (MLR) methods were used for constructing the regression models. Y-randomization and leave-N-out cross-validation (LNO) were carried out to verify the robustness of the model and to analysis of the independent test set. Best 4D-QSAR model provided the following statistics: R2 = 0.862, q2LOO = 0.737, q2LNO = 0.719, R2Pred = 0.884 (PLS) and R2 = 0.863, q2LOO = 0.771, q2LNO = 0.761, R2Pred = 0.877 (MLR). The comparison of the 4D-QSAR to 3D-QSAR was performed. More... »

PAGES

498-504

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00044-019-02303-x

DOI

http://dx.doi.org/10.1007/s00044-019-02303-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112074945


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0304", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medicinal and Biomolecular Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1115", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pharmacology and Pharmaceutical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Medicinal Chemistry, School of Pharmaceutical Science, NanChang University, 330006, Nanchang, China", 
          "id": "http://www.grid.ac/institutes/grid.260463.5", 
          "name": [
            "Department of Medicinal Chemistry, School of Pharmaceutical Science, NanChang University, 330006, Nanchang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Houpan", 
        "id": "sg:person.010023626563.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010023626563.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Science and Education, JiangXi Key Laboratory of Translational Cancer Research, JiangXi Cancer Hospital, 330029, Nanchang, China", 
          "id": "http://www.grid.ac/institutes/grid.452533.6", 
          "name": [
            "Department of Science and Education, JiangXi Key Laboratory of Translational Cancer Research, JiangXi Cancer Hospital, 330029, Nanchang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lv", 
        "givenName": "Qiaoli", 
        "id": "sg:person.01313135646.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313135646.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicinal Chemistry, School of Pharmaceutical Science, NanChang University, 330006, Nanchang, China", 
          "id": "http://www.grid.ac/institutes/grid.260463.5", 
          "name": [
            "Department of Medicinal Chemistry, School of Pharmaceutical Science, NanChang University, 330006, Nanchang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Weidong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicinal Chemistry, School of Pharmaceutical Science, NanChang University, 330006, Nanchang, China", 
          "id": "http://www.grid.ac/institutes/grid.260463.5", 
          "name": [
            "Department of Medicinal Chemistry, School of Pharmaceutical Science, NanChang University, 330006, Nanchang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lai", 
        "givenName": "Xiaoping", 
        "id": "sg:person.012302273215.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012302273215.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicinal Chemistry, School of Pharmaceutical Science, NanChang University, 330006, Nanchang, China", 
          "id": "http://www.grid.ac/institutes/grid.260463.5", 
          "name": [
            "Department of Medicinal Chemistry, School of Pharmaceutical Science, NanChang University, 330006, Nanchang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Ya", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicinal Chemistry, School of Pharmaceutical Science, NanChang University, 330006, Nanchang, China", 
          "id": "http://www.grid.ac/institutes/grid.260463.5", 
          "name": [
            "Department of Medicinal Chemistry, School of Pharmaceutical Science, NanChang University, 330006, Nanchang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tu", 
        "givenName": "Guogang", 
        "id": "sg:person.01123531446.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123531446.90"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11030-011-9340-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010347231", 
          "https://doi.org/10.1007/s11030-011-9340-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/365061a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020160837", 
          "https://doi.org/10.1038/365061a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10822-011-9462-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009013757", 
          "https://doi.org/10.1007/s10822-011-9462-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00894-010-0684-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036202399", 
          "https://doi.org/10.1007/s00894-010-0684-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00044-018-2219-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106003580", 
          "https://doi.org/10.1007/s00044-018-2219-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd1495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021110356", 
          "https://doi.org/10.1038/nrd1495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/346561a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034682253", 
          "https://doi.org/10.1038/346561a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1025366721142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033482751", 
          "https://doi.org/10.1023/a:1025366721142"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-11", 
    "datePublishedReg": "2019-02-11", 
    "description": "Over the years QSAR methods have developed from 2D-QSAR to more complex 4D-QSAR which features freedom of alignment and conformational flexibility of individual ligands. This approach takes advantage of conformational ensemble profile (CEP) generated for individual compounds by molecular dynamics simulations. In present study, the 4D-QSAR methods called LQTAgrid-QSAR has been performed on a series of potent CB2 cannabinoid receptor inverse agonists. Step-wise method was used to select the most informative variables. Partial least squares (PLS) and multiple linear regression (MLR) methods were used for constructing the regression models. Y-randomization and leave-N-out cross-validation (LNO) were carried out to verify the robustness of the model and to analysis of the independent test set. Best 4D-QSAR model provided the following statistics: R2\u2009=\u20090.862, q2LOO\u2009=\u20090.737, q2LNO\u2009=\u20090.719, R2Pred\u2009=\u20090.884 (PLS) and R2\u2009=\u20090.863, q2LOO\u2009=\u20090.771, q2LNO\u2009=\u20090.761, R2Pred\u2009=\u20090.877 (MLR). The comparison of the 4D-QSAR to 3D-QSAR was performed.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00044-019-02303-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1102690", 
        "issn": [
          "1054-2523", 
          "1554-8120"
        ], 
        "name": "Medicinal Chemistry Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "keywords": [
      "conformational ensemble profile", 
      "partial least squares", 
      "multiple linear regression method", 
      "linear regression method", 
      "informative variables", 
      "regression method", 
      "least squares", 
      "q2LOO", 
      "QSAR methods", 
      "ensemble profile", 
      "regression models", 
      "model", 
      "inverse", 
      "robustness", 
      "statistics", 
      "squares", 
      "simulations", 
      "variables", 
      "set", 
      "freedom", 
      "step-wise method", 
      "R2", 
      "test set", 
      "approach", 
      "flexibility", 
      "advantages", 
      "independent test set", 
      "dynamics simulations", 
      "comparison", 
      "randomization", 
      "analysis", 
      "series", 
      "out", 
      "molecular dynamics simulations", 
      "study", 
      "profile", 
      "individual ligands", 
      "present study", 
      "individual compounds", 
      "conformational flexibility", 
      "method", 
      "compounds", 
      "ligands", 
      "inverse agonist", 
      "agonists", 
      "cannabinoid receptor inverse agonists", 
      "receptor inverse agonist", 
      "years QSAR methods", 
      "complex 4D-QSAR", 
      "LQTAgrid-QSAR", 
      "potent CB2 cannabinoid receptor inverse agonists", 
      "CB2 cannabinoid receptor inverse agonists", 
      "Best 4D-QSAR model", 
      "q2LNO", 
      "CB2 cannabinoid receptor inverse", 
      "cannabinoid receptor inverse", 
      "receptor inverse"
    ], 
    "name": "4D-QSAR studies of CB2 cannabinoid receptor inverse agonists: a comparison to 3D-QSAR", 
    "pagination": "498-504", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112074945"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00044-019-02303-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00044-019-02303-x", 
      "https://app.dimensions.ai/details/publication/pub.1112074945"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_798.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00044-019-02303-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00044-019-02303-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00044-019-02303-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00044-019-02303-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00044-019-02303-x'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      22 PREDICATES      92 URIs      74 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00044-019-02303-x schema:about anzsrc-for:03
2 anzsrc-for:0304
3 anzsrc-for:11
4 anzsrc-for:1115
5 schema:author N604378ee5f3243d1ac9e39d7c0e90c1f
6 schema:citation sg:pub.10.1007/s00044-018-2219-4
7 sg:pub.10.1007/s00894-010-0684-x
8 sg:pub.10.1007/s10822-011-9462-9
9 sg:pub.10.1007/s11030-011-9340-3
10 sg:pub.10.1023/a:1025366721142
11 sg:pub.10.1038/346561a0
12 sg:pub.10.1038/365061a0
13 sg:pub.10.1038/nrd1495
14 schema:datePublished 2019-02-11
15 schema:datePublishedReg 2019-02-11
16 schema:description Over the years QSAR methods have developed from 2D-QSAR to more complex 4D-QSAR which features freedom of alignment and conformational flexibility of individual ligands. This approach takes advantage of conformational ensemble profile (CEP) generated for individual compounds by molecular dynamics simulations. In present study, the 4D-QSAR methods called LQTAgrid-QSAR has been performed on a series of potent CB2 cannabinoid receptor inverse agonists. Step-wise method was used to select the most informative variables. Partial least squares (PLS) and multiple linear regression (MLR) methods were used for constructing the regression models. Y-randomization and leave-N-out cross-validation (LNO) were carried out to verify the robustness of the model and to analysis of the independent test set. Best 4D-QSAR model provided the following statistics: R2 = 0.862, q2LOO = 0.737, q2LNO = 0.719, R2Pred = 0.884 (PLS) and R2 = 0.863, q2LOO = 0.771, q2LNO = 0.761, R2Pred = 0.877 (MLR). The comparison of the 4D-QSAR to 3D-QSAR was performed.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf Nc6d26004e172469db02a2857375b8b0a
21 Nddc1f6797521486aac7fb738058b0cdb
22 sg:journal.1102690
23 schema:keywords Best 4D-QSAR model
24 CB2 cannabinoid receptor inverse
25 CB2 cannabinoid receptor inverse agonists
26 LQTAgrid-QSAR
27 QSAR methods
28 R2
29 advantages
30 agonists
31 analysis
32 approach
33 cannabinoid receptor inverse
34 cannabinoid receptor inverse agonists
35 comparison
36 complex 4D-QSAR
37 compounds
38 conformational ensemble profile
39 conformational flexibility
40 dynamics simulations
41 ensemble profile
42 flexibility
43 freedom
44 independent test set
45 individual compounds
46 individual ligands
47 informative variables
48 inverse
49 inverse agonist
50 least squares
51 ligands
52 linear regression method
53 method
54 model
55 molecular dynamics simulations
56 multiple linear regression method
57 out
58 partial least squares
59 potent CB2 cannabinoid receptor inverse agonists
60 present study
61 profile
62 q2LNO
63 q2LOO
64 randomization
65 receptor inverse
66 receptor inverse agonist
67 regression method
68 regression models
69 robustness
70 series
71 set
72 simulations
73 squares
74 statistics
75 step-wise method
76 study
77 test set
78 variables
79 years QSAR methods
80 schema:name 4D-QSAR studies of CB2 cannabinoid receptor inverse agonists: a comparison to 3D-QSAR
81 schema:pagination 498-504
82 schema:productId N987569f7a6494e279122a87ea9298f8c
83 Nb9e2488616b547a7a679e591e64b2380
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112074945
85 https://doi.org/10.1007/s00044-019-02303-x
86 schema:sdDatePublished 2021-11-01T18:34
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher N6c878c3eb0dd44fc90563d4d9288f2a0
89 schema:url https://doi.org/10.1007/s00044-019-02303-x
90 sgo:license sg:explorer/license/
91 sgo:sdDataset articles
92 rdf:type schema:ScholarlyArticle
93 N2fa288dfe3ee44c5bae734a520a0a2fc rdf:first sg:person.01313135646.95
94 rdf:rest N81e7e0c400cf456fa16b1070a91eaf17
95 N46bdb7fd1ca34452801169c1808cb21a rdf:first sg:person.012302273215.68
96 rdf:rest N8c4d2dc28741448b84def6f0e61e67fb
97 N604378ee5f3243d1ac9e39d7c0e90c1f rdf:first sg:person.010023626563.84
98 rdf:rest N2fa288dfe3ee44c5bae734a520a0a2fc
99 N668f6bb49b1f4df79f9740cfd767605e rdf:first sg:person.01123531446.90
100 rdf:rest rdf:nil
101 N6c878c3eb0dd44fc90563d4d9288f2a0 schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 N80162e40b52d41b289b5740cb5b6e6e0 schema:affiliation grid-institutes:grid.260463.5
104 schema:familyName Xu
105 schema:givenName Weidong
106 rdf:type schema:Person
107 N81e7e0c400cf456fa16b1070a91eaf17 rdf:first N80162e40b52d41b289b5740cb5b6e6e0
108 rdf:rest N46bdb7fd1ca34452801169c1808cb21a
109 N8c4d2dc28741448b84def6f0e61e67fb rdf:first Ncc979fb45d93462d9d42a931f524e7d3
110 rdf:rest N668f6bb49b1f4df79f9740cfd767605e
111 N987569f7a6494e279122a87ea9298f8c schema:name dimensions_id
112 schema:value pub.1112074945
113 rdf:type schema:PropertyValue
114 Nb9e2488616b547a7a679e591e64b2380 schema:name doi
115 schema:value 10.1007/s00044-019-02303-x
116 rdf:type schema:PropertyValue
117 Nc6d26004e172469db02a2857375b8b0a schema:issueNumber 4
118 rdf:type schema:PublicationIssue
119 Ncc979fb45d93462d9d42a931f524e7d3 schema:affiliation grid-institutes:grid.260463.5
120 schema:familyName Liu
121 schema:givenName Ya
122 rdf:type schema:Person
123 Nddc1f6797521486aac7fb738058b0cdb schema:volumeNumber 28
124 rdf:type schema:PublicationVolume
125 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
126 schema:name Chemical Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0304 schema:inDefinedTermSet anzsrc-for:
129 schema:name Medicinal and Biomolecular Chemistry
130 rdf:type schema:DefinedTerm
131 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
132 schema:name Medical and Health Sciences
133 rdf:type schema:DefinedTerm
134 anzsrc-for:1115 schema:inDefinedTermSet anzsrc-for:
135 schema:name Pharmacology and Pharmaceutical Sciences
136 rdf:type schema:DefinedTerm
137 sg:journal.1102690 schema:issn 1054-2523
138 1554-8120
139 schema:name Medicinal Chemistry Research
140 schema:publisher Springer Nature
141 rdf:type schema:Periodical
142 sg:person.010023626563.84 schema:affiliation grid-institutes:grid.260463.5
143 schema:familyName Zhang
144 schema:givenName Houpan
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010023626563.84
146 rdf:type schema:Person
147 sg:person.01123531446.90 schema:affiliation grid-institutes:grid.260463.5
148 schema:familyName Tu
149 schema:givenName Guogang
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123531446.90
151 rdf:type schema:Person
152 sg:person.012302273215.68 schema:affiliation grid-institutes:grid.260463.5
153 schema:familyName Lai
154 schema:givenName Xiaoping
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012302273215.68
156 rdf:type schema:Person
157 sg:person.01313135646.95 schema:affiliation grid-institutes:grid.452533.6
158 schema:familyName Lv
159 schema:givenName Qiaoli
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313135646.95
161 rdf:type schema:Person
162 sg:pub.10.1007/s00044-018-2219-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106003580
163 https://doi.org/10.1007/s00044-018-2219-4
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s00894-010-0684-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036202399
166 https://doi.org/10.1007/s00894-010-0684-x
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s10822-011-9462-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009013757
169 https://doi.org/10.1007/s10822-011-9462-9
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s11030-011-9340-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010347231
172 https://doi.org/10.1007/s11030-011-9340-3
173 rdf:type schema:CreativeWork
174 sg:pub.10.1023/a:1025366721142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033482751
175 https://doi.org/10.1023/a:1025366721142
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/346561a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034682253
178 https://doi.org/10.1038/346561a0
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/365061a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020160837
181 https://doi.org/10.1038/365061a0
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nrd1495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021110356
184 https://doi.org/10.1038/nrd1495
185 rdf:type schema:CreativeWork
186 grid-institutes:grid.260463.5 schema:alternateName Department of Medicinal Chemistry, School of Pharmaceutical Science, NanChang University, 330006, Nanchang, China
187 schema:name Department of Medicinal Chemistry, School of Pharmaceutical Science, NanChang University, 330006, Nanchang, China
188 rdf:type schema:Organization
189 grid-institutes:grid.452533.6 schema:alternateName Department of Science and Education, JiangXi Key Laboratory of Translational Cancer Research, JiangXi Cancer Hospital, 330029, Nanchang, China
190 schema:name Department of Science and Education, JiangXi Key Laboratory of Translational Cancer Research, JiangXi Cancer Hospital, 330029, Nanchang, China
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...