Ontology type: schema:ScholarlyArticle Open Access: True
2021-08-09
AUTHORSHoria Cornean, Henrik Garde, Arne Jensen
ABSTRACTWe prove norm estimates for the difference of resolvents of operators and their discrete counterparts, embedded into the continuum using biorthogonal Riesz sequences. The estimates are given in the operator norm for operators on square integrable functions, and depend explicitly on the mesh size for the discrete operators. The operators are a sum of a Fourier multiplier and a multiplicative potential. The Fourier multipliers include the fractional Laplacian and the pseudo-relativistic free Hamiltonian. The potentials are real, bounded, and Hölder continuous. As a side-product, the Hausdorff distance between the spectra of the resolvents of the continuous and discrete operators decays with the same rate in the mesh size as for the norm resolvent estimates. The same result holds for the spectra of the original operators in a local Hausdorff distance. More... »
PAGES71
http://scigraph.springernature.com/pub.10.1007/s00041-021-09876-5
DOIhttp://dx.doi.org/10.1007/s00041-021-09876-5
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1140292458
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematical Sciences, Aalborg University, Skjernvej 4A, 9220, Aalborg \u00d8, Denmark",
"id": "http://www.grid.ac/institutes/grid.5117.2",
"name": [
"Department of Mathematical Sciences, Aalborg University, Skjernvej 4A, 9220, Aalborg \u00d8, Denmark"
],
"type": "Organization"
},
"familyName": "Cornean",
"givenName": "Horia",
"id": "sg:person.07770170073.57",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07770170073.57"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, Aarhus University, Ny Munkegade 118, 8000, Aarhus C, Denmark",
"id": "http://www.grid.ac/institutes/grid.7048.b",
"name": [
"Department of Mathematics, Aarhus University, Ny Munkegade 118, 8000, Aarhus C, Denmark"
],
"type": "Organization"
},
"familyName": "Garde",
"givenName": "Henrik",
"id": "sg:person.016572750311.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016572750311.31"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematical Sciences, Aalborg University, Skjernvej 4A, 9220, Aalborg \u00d8, Denmark",
"id": "http://www.grid.ac/institutes/grid.5117.2",
"name": [
"Department of Mathematical Sciences, Aalborg University, Skjernvej 4A, 9220, Aalborg \u00d8, Denmark"
],
"type": "Organization"
},
"familyName": "Jensen",
"givenName": "Arne",
"id": "sg:person.015240561701.11",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015240561701.11"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/3-540-51783-9_19",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042538784",
"https://doi.org/10.1007/3-540-51783-9_19"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-08-09",
"datePublishedReg": "2021-08-09",
"description": "We prove norm estimates for the difference of resolvents of operators and their discrete counterparts, embedded into the continuum using biorthogonal Riesz sequences. The estimates are given in the operator norm for operators on square integrable functions, and depend explicitly on the mesh size for the discrete operators. The operators are a sum of a Fourier multiplier and a multiplicative potential. The Fourier multipliers include the fractional Laplacian and the pseudo-relativistic free Hamiltonian. The potentials are real, bounded, and H\u00f6lder continuous. As a side-product, the Hausdorff distance between the spectra of the resolvents of the continuous and discrete operators decays with the same rate in the mesh size as for the norm resolvent estimates. The same result holds for the spectra of the original operators in a local Hausdorff distance.",
"genre": "article",
"id": "sg:pub.10.1007/s00041-021-09876-5",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1042645",
"issn": [
"1069-5869",
"1531-5851"
],
"name": "Journal of Fourier Analysis and Applications",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "27"
}
],
"keywords": [
"difference of resolvents",
"square integrable functions",
"discrete operators",
"Fourier multipliers",
"original operator",
"norm resolvent convergence",
"norm estimates",
"resolvent",
"operators",
"discrete counterpart",
"Riesz sequences",
"operator norm",
"integrable functions",
"mesh size",
"multiplicative potential",
"multipliers",
"fractional Laplacian",
"free Hamiltonian",
"H\u00f6lder",
"Hausdorff distance",
"resolvent estimates",
"resolvent convergence",
"estimates",
"continuum",
"norms",
"function",
"sum",
"Laplacian",
"Hamiltonian",
"distance",
"spectra",
"same results",
"convergence",
"counterparts",
"sequence",
"size",
"potential",
"same rate",
"results",
"differences",
"rate"
],
"name": "Norm Resolvent Convergence of Discretized Fourier Multipliers",
"pagination": "71",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1140292458"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00041-021-09876-5"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00041-021-09876-5",
"https://app.dimensions.ai/details/publication/pub.1140292458"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:31",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_879.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00041-021-09876-5"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00041-021-09876-5'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00041-021-09876-5'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00041-021-09876-5'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00041-021-09876-5'
This table displays all metadata directly associated to this object as RDF triples.
120 TRIPLES
22 PREDICATES
67 URIs
58 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00041-021-09876-5 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0101 |
3 | ″ | schema:author | N7187b8cfc7b346e3afab41b7ba05b030 |
4 | ″ | schema:citation | sg:pub.10.1007/3-540-51783-9_19 |
5 | ″ | schema:datePublished | 2021-08-09 |
6 | ″ | schema:datePublishedReg | 2021-08-09 |
7 | ″ | schema:description | We prove norm estimates for the difference of resolvents of operators and their discrete counterparts, embedded into the continuum using biorthogonal Riesz sequences. The estimates are given in the operator norm for operators on square integrable functions, and depend explicitly on the mesh size for the discrete operators. The operators are a sum of a Fourier multiplier and a multiplicative potential. The Fourier multipliers include the fractional Laplacian and the pseudo-relativistic free Hamiltonian. The potentials are real, bounded, and Hölder continuous. As a side-product, the Hausdorff distance between the spectra of the resolvents of the continuous and discrete operators decays with the same rate in the mesh size as for the norm resolvent estimates. The same result holds for the spectra of the original operators in a local Hausdorff distance. |
8 | ″ | schema:genre | article |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | true |
11 | ″ | schema:isPartOf | N87b14cd595fc4e508ca58a746bff9c68 |
12 | ″ | ″ | Nc04ffa73b0c94f3ea992c2f2a2a21ae3 |
13 | ″ | ″ | sg:journal.1042645 |
14 | ″ | schema:keywords | Fourier multipliers |
15 | ″ | ″ | Hamiltonian |
16 | ″ | ″ | Hausdorff distance |
17 | ″ | ″ | Hölder |
18 | ″ | ″ | Laplacian |
19 | ″ | ″ | Riesz sequences |
20 | ″ | ″ | continuum |
21 | ″ | ″ | convergence |
22 | ″ | ″ | counterparts |
23 | ″ | ″ | difference of resolvents |
24 | ″ | ″ | differences |
25 | ″ | ″ | discrete counterpart |
26 | ″ | ″ | discrete operators |
27 | ″ | ″ | distance |
28 | ″ | ″ | estimates |
29 | ″ | ″ | fractional Laplacian |
30 | ″ | ″ | free Hamiltonian |
31 | ″ | ″ | function |
32 | ″ | ″ | integrable functions |
33 | ″ | ″ | mesh size |
34 | ″ | ″ | multiplicative potential |
35 | ″ | ″ | multipliers |
36 | ″ | ″ | norm estimates |
37 | ″ | ″ | norm resolvent convergence |
38 | ″ | ″ | norms |
39 | ″ | ″ | operator norm |
40 | ″ | ″ | operators |
41 | ″ | ″ | original operator |
42 | ″ | ″ | potential |
43 | ″ | ″ | rate |
44 | ″ | ″ | resolvent |
45 | ″ | ″ | resolvent convergence |
46 | ″ | ″ | resolvent estimates |
47 | ″ | ″ | results |
48 | ″ | ″ | same rate |
49 | ″ | ″ | same results |
50 | ″ | ″ | sequence |
51 | ″ | ″ | size |
52 | ″ | ″ | spectra |
53 | ″ | ″ | square integrable functions |
54 | ″ | ″ | sum |
55 | ″ | schema:name | Norm Resolvent Convergence of Discretized Fourier Multipliers |
56 | ″ | schema:pagination | 71 |
57 | ″ | schema:productId | N84f2684d053c49e3ba3d9111dedb0f17 |
58 | ″ | ″ | Nb634565f007d4ee2b905b0b20de679a9 |
59 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1140292458 |
60 | ″ | ″ | https://doi.org/10.1007/s00041-021-09876-5 |
61 | ″ | schema:sdDatePublished | 2022-05-10T10:31 |
62 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
63 | ″ | schema:sdPublisher | N80176ddf888847ada66b733a769f230c |
64 | ″ | schema:url | https://doi.org/10.1007/s00041-021-09876-5 |
65 | ″ | sgo:license | sg:explorer/license/ |
66 | ″ | sgo:sdDataset | articles |
67 | ″ | rdf:type | schema:ScholarlyArticle |
68 | N2200541596a34b40b8088492108a163b | rdf:first | sg:person.015240561701.11 |
69 | ″ | rdf:rest | rdf:nil |
70 | N7187b8cfc7b346e3afab41b7ba05b030 | rdf:first | sg:person.07770170073.57 |
71 | ″ | rdf:rest | N9f4b9e8cb2014d6d948eeafa2860b399 |
72 | N80176ddf888847ada66b733a769f230c | schema:name | Springer Nature - SN SciGraph project |
73 | ″ | rdf:type | schema:Organization |
74 | N84f2684d053c49e3ba3d9111dedb0f17 | schema:name | doi |
75 | ″ | schema:value | 10.1007/s00041-021-09876-5 |
76 | ″ | rdf:type | schema:PropertyValue |
77 | N87b14cd595fc4e508ca58a746bff9c68 | schema:volumeNumber | 27 |
78 | ″ | rdf:type | schema:PublicationVolume |
79 | N9f4b9e8cb2014d6d948eeafa2860b399 | rdf:first | sg:person.016572750311.31 |
80 | ″ | rdf:rest | N2200541596a34b40b8088492108a163b |
81 | Nb634565f007d4ee2b905b0b20de679a9 | schema:name | dimensions_id |
82 | ″ | schema:value | pub.1140292458 |
83 | ″ | rdf:type | schema:PropertyValue |
84 | Nc04ffa73b0c94f3ea992c2f2a2a21ae3 | schema:issueNumber | 4 |
85 | ″ | rdf:type | schema:PublicationIssue |
86 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
87 | ″ | schema:name | Mathematical Sciences |
88 | ″ | rdf:type | schema:DefinedTerm |
89 | anzsrc-for:0101 | schema:inDefinedTermSet | anzsrc-for: |
90 | ″ | schema:name | Pure Mathematics |
91 | ″ | rdf:type | schema:DefinedTerm |
92 | sg:journal.1042645 | schema:issn | 1069-5869 |
93 | ″ | ″ | 1531-5851 |
94 | ″ | schema:name | Journal of Fourier Analysis and Applications |
95 | ″ | schema:publisher | Springer Nature |
96 | ″ | rdf:type | schema:Periodical |
97 | sg:person.015240561701.11 | schema:affiliation | grid-institutes:grid.5117.2 |
98 | ″ | schema:familyName | Jensen |
99 | ″ | schema:givenName | Arne |
100 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015240561701.11 |
101 | ″ | rdf:type | schema:Person |
102 | sg:person.016572750311.31 | schema:affiliation | grid-institutes:grid.7048.b |
103 | ″ | schema:familyName | Garde |
104 | ″ | schema:givenName | Henrik |
105 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016572750311.31 |
106 | ″ | rdf:type | schema:Person |
107 | sg:person.07770170073.57 | schema:affiliation | grid-institutes:grid.5117.2 |
108 | ″ | schema:familyName | Cornean |
109 | ″ | schema:givenName | Horia |
110 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07770170073.57 |
111 | ″ | rdf:type | schema:Person |
112 | sg:pub.10.1007/3-540-51783-9_19 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1042538784 |
113 | ″ | ″ | https://doi.org/10.1007/3-540-51783-9_19 |
114 | ″ | rdf:type | schema:CreativeWork |
115 | grid-institutes:grid.5117.2 | schema:alternateName | Department of Mathematical Sciences, Aalborg University, Skjernvej 4A, 9220, Aalborg Ø, Denmark |
116 | ″ | schema:name | Department of Mathematical Sciences, Aalborg University, Skjernvej 4A, 9220, Aalborg Ø, Denmark |
117 | ″ | rdf:type | schema:Organization |
118 | grid-institutes:grid.7048.b | schema:alternateName | Department of Mathematics, Aarhus University, Ny Munkegade 118, 8000, Aarhus C, Denmark |
119 | ″ | schema:name | Department of Mathematics, Aarhus University, Ny Munkegade 118, 8000, Aarhus C, Denmark |
120 | ″ | rdf:type | schema:Organization |