Norm Resolvent Convergence of Discretized Fourier Multipliers View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-08-09

AUTHORS

Horia Cornean, Henrik Garde, Arne Jensen

ABSTRACT

We prove norm estimates for the difference of resolvents of operators and their discrete counterparts, embedded into the continuum using biorthogonal Riesz sequences. The estimates are given in the operator norm for operators on square integrable functions, and depend explicitly on the mesh size for the discrete operators. The operators are a sum of a Fourier multiplier and a multiplicative potential. The Fourier multipliers include the fractional Laplacian and the pseudo-relativistic free Hamiltonian. The potentials are real, bounded, and Hölder continuous. As a side-product, the Hausdorff distance between the spectra of the resolvents of the continuous and discrete operators decays with the same rate in the mesh size as for the norm resolvent estimates. The same result holds for the spectra of the original operators in a local Hausdorff distance. More... »

PAGES

71

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00041-021-09876-5

DOI

http://dx.doi.org/10.1007/s00041-021-09876-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1140292458


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, Aalborg University, Skjernvej 4A, 9220, Aalborg \u00d8, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5117.2", 
          "name": [
            "Department of Mathematical Sciences, Aalborg University, Skjernvej 4A, 9220, Aalborg \u00d8, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cornean", 
        "givenName": "Horia", 
        "id": "sg:person.07770170073.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07770170073.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Aarhus University, Ny Munkegade 118, 8000, Aarhus C, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.7048.b", 
          "name": [
            "Department of Mathematics, Aarhus University, Ny Munkegade 118, 8000, Aarhus C, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garde", 
        "givenName": "Henrik", 
        "id": "sg:person.016572750311.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016572750311.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, Aalborg University, Skjernvej 4A, 9220, Aalborg \u00d8, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5117.2", 
          "name": [
            "Department of Mathematical Sciences, Aalborg University, Skjernvej 4A, 9220, Aalborg \u00d8, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jensen", 
        "givenName": "Arne", 
        "id": "sg:person.015240561701.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015240561701.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/3-540-51783-9_19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042538784", 
          "https://doi.org/10.1007/3-540-51783-9_19"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-08-09", 
    "datePublishedReg": "2021-08-09", 
    "description": "We prove norm estimates for the difference of resolvents of operators and their discrete counterparts, embedded into the continuum using biorthogonal Riesz sequences. The estimates are given in the operator norm for operators on square integrable functions, and depend explicitly on the mesh size for the discrete operators. The operators are a sum of a Fourier multiplier and a multiplicative potential. The Fourier multipliers include the fractional Laplacian and the pseudo-relativistic free Hamiltonian. The potentials are real, bounded, and H\u00f6lder continuous. As a side-product, the Hausdorff distance between the spectra of the resolvents of the continuous and discrete operators decays with the same rate in the mesh size as for the norm resolvent estimates. The same result holds for the spectra of the original operators in a local Hausdorff distance.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00041-021-09876-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1042645", 
        "issn": [
          "1069-5869", 
          "1531-5851"
        ], 
        "name": "Journal of Fourier Analysis and Applications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "keywords": [
      "difference of resolvents", 
      "square integrable functions", 
      "discrete operators", 
      "Fourier multipliers", 
      "original operator", 
      "norm resolvent convergence", 
      "norm estimates", 
      "resolvent", 
      "operators", 
      "discrete counterpart", 
      "Riesz sequences", 
      "operator norm", 
      "integrable functions", 
      "mesh size", 
      "multiplicative potential", 
      "multipliers", 
      "fractional Laplacian", 
      "free Hamiltonian", 
      "H\u00f6lder", 
      "Hausdorff distance", 
      "resolvent estimates", 
      "resolvent convergence", 
      "estimates", 
      "continuum", 
      "norms", 
      "function", 
      "sum", 
      "Laplacian", 
      "Hamiltonian", 
      "distance", 
      "spectra", 
      "same results", 
      "convergence", 
      "counterparts", 
      "sequence", 
      "size", 
      "potential", 
      "same rate", 
      "results", 
      "differences", 
      "rate", 
      "biorthogonal Riesz sequences", 
      "pseudo-relativistic free Hamiltonian", 
      "norm resolvent estimates", 
      "local Hausdorff distance"
    ], 
    "name": "Norm Resolvent Convergence of Discretized Fourier Multipliers", 
    "pagination": "71", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1140292458"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00041-021-09876-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00041-021-09876-5", 
      "https://app.dimensions.ai/details/publication/pub.1140292458"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T19:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_885.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00041-021-09876-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00041-021-09876-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00041-021-09876-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00041-021-09876-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00041-021-09876-5'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      22 PREDICATES      71 URIs      62 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00041-021-09876-5 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N24043bc8286d43deb80a17537fcaea1f
4 schema:citation sg:pub.10.1007/3-540-51783-9_19
5 schema:datePublished 2021-08-09
6 schema:datePublishedReg 2021-08-09
7 schema:description We prove norm estimates for the difference of resolvents of operators and their discrete counterparts, embedded into the continuum using biorthogonal Riesz sequences. The estimates are given in the operator norm for operators on square integrable functions, and depend explicitly on the mesh size for the discrete operators. The operators are a sum of a Fourier multiplier and a multiplicative potential. The Fourier multipliers include the fractional Laplacian and the pseudo-relativistic free Hamiltonian. The potentials are real, bounded, and Hölder continuous. As a side-product, the Hausdorff distance between the spectra of the resolvents of the continuous and discrete operators decays with the same rate in the mesh size as for the norm resolvent estimates. The same result holds for the spectra of the original operators in a local Hausdorff distance.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N9c60e5a29527492ab39563d4a579e123
12 N9f381a97e5e047d68c869f3c47382061
13 sg:journal.1042645
14 schema:keywords Fourier multipliers
15 Hamiltonian
16 Hausdorff distance
17 Hölder
18 Laplacian
19 Riesz sequences
20 biorthogonal Riesz sequences
21 continuum
22 convergence
23 counterparts
24 difference of resolvents
25 differences
26 discrete counterpart
27 discrete operators
28 distance
29 estimates
30 fractional Laplacian
31 free Hamiltonian
32 function
33 integrable functions
34 local Hausdorff distance
35 mesh size
36 multiplicative potential
37 multipliers
38 norm estimates
39 norm resolvent convergence
40 norm resolvent estimates
41 norms
42 operator norm
43 operators
44 original operator
45 potential
46 pseudo-relativistic free Hamiltonian
47 rate
48 resolvent
49 resolvent convergence
50 resolvent estimates
51 results
52 same rate
53 same results
54 sequence
55 size
56 spectra
57 square integrable functions
58 sum
59 schema:name Norm Resolvent Convergence of Discretized Fourier Multipliers
60 schema:pagination 71
61 schema:productId N2b6d7a716dba4b0ea451e8f77052dfaa
62 Nfae3801a3c48490e853b5118986592d8
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140292458
64 https://doi.org/10.1007/s00041-021-09876-5
65 schema:sdDatePublished 2022-01-01T19:02
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N341aa7d77e2d4c60a5485e239a383195
68 schema:url https://doi.org/10.1007/s00041-021-09876-5
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N0b22a792f1834d6980cd2c9fcef77da6 rdf:first sg:person.016572750311.31
73 rdf:rest Naeb8a1b1614347b685144de5f97e15f9
74 N24043bc8286d43deb80a17537fcaea1f rdf:first sg:person.07770170073.57
75 rdf:rest N0b22a792f1834d6980cd2c9fcef77da6
76 N2b6d7a716dba4b0ea451e8f77052dfaa schema:name dimensions_id
77 schema:value pub.1140292458
78 rdf:type schema:PropertyValue
79 N341aa7d77e2d4c60a5485e239a383195 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 N9c60e5a29527492ab39563d4a579e123 schema:issueNumber 4
82 rdf:type schema:PublicationIssue
83 N9f381a97e5e047d68c869f3c47382061 schema:volumeNumber 27
84 rdf:type schema:PublicationVolume
85 Naeb8a1b1614347b685144de5f97e15f9 rdf:first sg:person.015240561701.11
86 rdf:rest rdf:nil
87 Nfae3801a3c48490e853b5118986592d8 schema:name doi
88 schema:value 10.1007/s00041-021-09876-5
89 rdf:type schema:PropertyValue
90 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
91 schema:name Mathematical Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
94 schema:name Pure Mathematics
95 rdf:type schema:DefinedTerm
96 sg:journal.1042645 schema:issn 1069-5869
97 1531-5851
98 schema:name Journal of Fourier Analysis and Applications
99 schema:publisher Springer Nature
100 rdf:type schema:Periodical
101 sg:person.015240561701.11 schema:affiliation grid-institutes:grid.5117.2
102 schema:familyName Jensen
103 schema:givenName Arne
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015240561701.11
105 rdf:type schema:Person
106 sg:person.016572750311.31 schema:affiliation grid-institutes:grid.7048.b
107 schema:familyName Garde
108 schema:givenName Henrik
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016572750311.31
110 rdf:type schema:Person
111 sg:person.07770170073.57 schema:affiliation grid-institutes:grid.5117.2
112 schema:familyName Cornean
113 schema:givenName Horia
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07770170073.57
115 rdf:type schema:Person
116 sg:pub.10.1007/3-540-51783-9_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042538784
117 https://doi.org/10.1007/3-540-51783-9_19
118 rdf:type schema:CreativeWork
119 grid-institutes:grid.5117.2 schema:alternateName Department of Mathematical Sciences, Aalborg University, Skjernvej 4A, 9220, Aalborg Ø, Denmark
120 schema:name Department of Mathematical Sciences, Aalborg University, Skjernvej 4A, 9220, Aalborg Ø, Denmark
121 rdf:type schema:Organization
122 grid-institutes:grid.7048.b schema:alternateName Department of Mathematics, Aarhus University, Ny Munkegade 118, 8000, Aarhus C, Denmark
123 schema:name Department of Mathematics, Aarhus University, Ny Munkegade 118, 8000, Aarhus C, Denmark
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...