Beyond Wiener’s Lemma: Nuclear Convolution Algebras and the Inversion of Digital Filters View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-13

AUTHORS

Julien Fageot, Michael Unser, John Paul Ward

ABSTRACT

A convolution algebra is a topological vector space X that is closed under the convolution operation. It is said to be inverse-closed if each element of X whose spectrum is bounded away from zero has a convolution inverse that is also part of the algebra. The theory of discrete Banach convolution algebras is well established with a complete characterization of the weighted ℓ1 algebras that are inverse-closed—these are henceforth referred to as the Gelfand–Raikov–Shilov (GRS) spaces. Our starting point here is the observation that the space S(Zd) of rapidly decreasing sequences, which is not Banach but nuclear, is an inverse-closed convolution algebra. This property propagates to the more constrained space of exponentially decreasing sequences E(Zd) that we prove to be nuclear as well. Using a recent extended version of the GRS condition, we then show that E(Zd) is actually the smallest inverse-closed convolution algebra. This allows us to describe the hierarchy of the inverse-closed convolution algebras from the smallest, E(Zd), to the largest, ℓ1(Zd). In addition, we prove that, in contrast to S(Zd), all members of E(Zd) admit well-defined convolution inverses in S′(Zd) with the “unstable” scenario (when some frequencies are vanishing) giving rise to inverse filters with slowly-increasing impulse responses. Finally, we use those results to reveal the decay and reproduction properties of an extended family of cardinal spline interpolants. More... »

PAGES

1-27

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00041-019-09669-x

DOI

http://dx.doi.org/10.1007/s00041-019-09669-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112112884


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "\u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne", 
          "id": "https://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "Biomedical Imaging Group, \u00c9cole polytechnique f\u00e9d\u00e9rale de Lausanne (EPFL), Station 17, 1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fageot", 
        "givenName": "Julien", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne", 
          "id": "https://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "Biomedical Imaging Group, \u00c9cole polytechnique f\u00e9d\u00e9rale de Lausanne (EPFL), Station 17, 1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Unser", 
        "givenName": "Michael", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "North Carolina Agricultural and Technical State University", 
          "id": "https://www.grid.ac/institutes/grid.261037.1", 
          "name": [
            "Department of Mathematics, North Carolina A&T State University, 27411, Greensboro, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ward", 
        "givenName": "John Paul", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0002-9939-1975-0365002-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000702241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11868-011-0044-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003535505", 
          "https://doi.org/10.1007/s11868-011-0044-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01894779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004433685", 
          "https://doi.org/10.1007/bf01894779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01894779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004433685", 
          "https://doi.org/10.1007/bf01894779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-98-04319-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007317487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-8176-4891-6_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015251699", 
          "https://doi.org/10.1007/978-0-8176-4891-6_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160230202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017710426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160230202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017710426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-1969-0240835-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018666683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0894-0347-03-00444-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020031555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2016.02.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021304996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1022374482", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-8176-8134-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022374482", 
          "https://doi.org/10.1007/978-0-8176-8134-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-8176-8134-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022374482", 
          "https://doi.org/10.1007/978-0-8176-8134-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00041-013-9318-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024837020", 
          "https://doi.org/10.1007/s00041-013-9318-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2005.03.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029144603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9045(90)90079-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035477809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11868-015-0122-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037212936", 
          "https://doi.org/10.1007/s11868-015-0122-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-1987-0878701-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037516024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00041-001-0001-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041334189", 
          "https://doi.org/10.1007/s00041-001-0001-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01077964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041386043", 
          "https://doi.org/10.1007/bf01077964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01077964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041386043", 
          "https://doi.org/10.1007/bf01077964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-07-04303-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041892376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01216799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049276318", 
          "https://doi.org/10.1007/bf01216799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01216799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049276318", 
          "https://doi.org/10.1007/bf01216799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11766-013-3215-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049377683", 
          "https://doi.org/10.1007/s11766-013-3215-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-1984-0758197-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050874863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/im1997v061n06abeh000164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058168004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.875199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.843002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061180138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.993400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061180466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2005.843700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061799494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036144501386986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1968102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069673545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2374666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069901023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0294-1449(16)30287-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083870273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-51911-1_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085185757", 
          "https://doi.org/10.1007/978-3-319-51911-1_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/sm-18-1-87-136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091703094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611970555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098556216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/fic/052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098700021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-87665-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109711179", 
          "https://doi.org/10.1007/978-3-642-87665-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-87665-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109711179", 
          "https://doi.org/10.1007/978-3-642-87665-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-13", 
    "datePublishedReg": "2019-02-13", 
    "description": "A convolution algebra is a topological vector space X that is closed under the convolution operation. It is said to be inverse-closed if each element of X whose spectrum is bounded away from zero has a convolution inverse that is also part of the algebra. The theory of discrete Banach convolution algebras is well established with a complete characterization of the weighted \u21131 algebras that are inverse-closed\u2014these are henceforth referred to as the Gelfand\u2013Raikov\u2013Shilov (GRS) spaces. Our starting point here is the observation that the space S(Zd) of rapidly decreasing sequences, which is not Banach but nuclear, is an inverse-closed convolution algebra. This property propagates to the more constrained space of exponentially decreasing sequences E(Zd) that we prove to be nuclear as well. Using a recent extended version of the GRS condition, we then show that E(Zd) is actually the smallest inverse-closed convolution algebra. This allows us to describe the hierarchy of the inverse-closed convolution algebras from the smallest, E(Zd), to the largest, \u21131(Zd). In addition, we prove that, in contrast to S(Zd), all members of E(Zd) admit well-defined convolution inverses in S\u2032(Zd) with the \u201cunstable\u201d scenario (when some frequencies are vanishing) giving rise to inverse filters with slowly-increasing impulse responses. Finally, we use those results to reveal the decay and reproduction properties of an extended family of cardinal spline interpolants.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00041-019-09669-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042645", 
        "issn": [
          "1069-5869", 
          "1531-5851"
        ], 
        "name": "Journal of Fourier Analysis and Applications", 
        "type": "Periodical"
      }
    ], 
    "name": "Beyond Wiener\u2019s Lemma: Nuclear Convolution Algebras and the Inversion of Digital Filters", 
    "pagination": "1-27", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "86d639085ea19555da2f84e3ca10e2fe71416d9c01abd73e22c9a9ee04e7f196"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00041-019-09669-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112112884"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00041-019-09669-x", 
      "https://app.dimensions.ai/details/publication/pub.1112112884"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000336_0000000336/records_94816_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00041-019-09669-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00041-019-09669-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00041-019-09669-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00041-019-09669-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00041-019-09669-x'


 

This table displays all metadata directly associated to this object as RDF triples.

188 TRIPLES      21 PREDICATES      60 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00041-019-09669-x schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N1febd52669e246eda5cf566d8fb65ba1
4 schema:citation sg:pub.10.1007/978-0-8176-4891-6_5
5 sg:pub.10.1007/978-0-8176-8134-0
6 sg:pub.10.1007/978-3-319-51911-1_5
7 sg:pub.10.1007/978-3-642-87665-3
8 sg:pub.10.1007/bf01077964
9 sg:pub.10.1007/bf01216799
10 sg:pub.10.1007/bf01894779
11 sg:pub.10.1007/s00041-001-0001-2
12 sg:pub.10.1007/s00041-013-9318-x
13 sg:pub.10.1007/s11766-013-3215-6
14 sg:pub.10.1007/s11868-011-0044-3
15 sg:pub.10.1007/s11868-015-0122-z
16 https://app.dimensions.ai/details/publication/pub.1022374482
17 https://doi.org/10.1002/cpa.3160230202
18 https://doi.org/10.1016/0021-9045(90)90079-6
19 https://doi.org/10.1016/j.jmaa.2005.03.067
20 https://doi.org/10.1016/j.jmaa.2016.02.034
21 https://doi.org/10.1016/s0294-1449(16)30287-6
22 https://doi.org/10.1070/im1997v061n06abeh000164
23 https://doi.org/10.1090/fic/052
24 https://doi.org/10.1090/s0002-9939-1969-0240835-4
25 https://doi.org/10.1090/s0002-9939-1975-0365002-8
26 https://doi.org/10.1090/s0002-9939-98-04319-6
27 https://doi.org/10.1090/s0002-9947-07-04303-6
28 https://doi.org/10.1090/s0025-5718-1984-0758197-9
29 https://doi.org/10.1090/s0025-5718-1987-0878701-2
30 https://doi.org/10.1090/s0894-0347-03-00444-2
31 https://doi.org/10.1109/42.875199
32 https://doi.org/10.1109/5.843002
33 https://doi.org/10.1109/5.993400
34 https://doi.org/10.1109/tsp.2005.843700
35 https://doi.org/10.1137/1.9781611970555
36 https://doi.org/10.1137/s0036144501386986
37 https://doi.org/10.2307/1968102
38 https://doi.org/10.2307/2374666
39 https://doi.org/10.4064/sm-18-1-87-136
40 schema:datePublished 2019-02-13
41 schema:datePublishedReg 2019-02-13
42 schema:description A convolution algebra is a topological vector space X that is closed under the convolution operation. It is said to be inverse-closed if each element of X whose spectrum is bounded away from zero has a convolution inverse that is also part of the algebra. The theory of discrete Banach convolution algebras is well established with a complete characterization of the weighted ℓ1 algebras that are inverse-closed—these are henceforth referred to as the Gelfand–Raikov–Shilov (GRS) spaces. Our starting point here is the observation that the space S(Zd) of rapidly decreasing sequences, which is not Banach but nuclear, is an inverse-closed convolution algebra. This property propagates to the more constrained space of exponentially decreasing sequences E(Zd) that we prove to be nuclear as well. Using a recent extended version of the GRS condition, we then show that E(Zd) is actually the smallest inverse-closed convolution algebra. This allows us to describe the hierarchy of the inverse-closed convolution algebras from the smallest, E(Zd), to the largest, ℓ1(Zd). In addition, we prove that, in contrast to S(Zd), all members of E(Zd) admit well-defined convolution inverses in S′(Zd) with the “unstable” scenario (when some frequencies are vanishing) giving rise to inverse filters with slowly-increasing impulse responses. Finally, we use those results to reveal the decay and reproduction properties of an extended family of cardinal spline interpolants.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf sg:journal.1042645
47 schema:name Beyond Wiener’s Lemma: Nuclear Convolution Algebras and the Inversion of Digital Filters
48 schema:pagination 1-27
49 schema:productId N3e567adfe2e1402697ca8a3fb08a6997
50 N483cc11c73c640cdadf993442ebd08ca
51 N4a122ea743af49f89c6cff3837e10e78
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112112884
53 https://doi.org/10.1007/s00041-019-09669-x
54 schema:sdDatePublished 2019-04-11T09:05
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Nb4eeb83ea57645f3b05bc192958c52fc
57 schema:url https://link.springer.com/10.1007%2Fs00041-019-09669-x
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N1116535820ec4dc3987b0d70f21bc3b6 rdf:first N16f68bdea0074f5fb1ea34b4eadf2f99
62 rdf:rest Nb207f80a18a74b7db69e1024bd3cd6af
63 N16f68bdea0074f5fb1ea34b4eadf2f99 schema:affiliation https://www.grid.ac/institutes/grid.5333.6
64 schema:familyName Unser
65 schema:givenName Michael
66 rdf:type schema:Person
67 N1febd52669e246eda5cf566d8fb65ba1 rdf:first Nc1ebb5c82b504e318c9d624adde0d6a6
68 rdf:rest N1116535820ec4dc3987b0d70f21bc3b6
69 N3e567adfe2e1402697ca8a3fb08a6997 schema:name dimensions_id
70 schema:value pub.1112112884
71 rdf:type schema:PropertyValue
72 N483cc11c73c640cdadf993442ebd08ca schema:name doi
73 schema:value 10.1007/s00041-019-09669-x
74 rdf:type schema:PropertyValue
75 N4a122ea743af49f89c6cff3837e10e78 schema:name readcube_id
76 schema:value 86d639085ea19555da2f84e3ca10e2fe71416d9c01abd73e22c9a9ee04e7f196
77 rdf:type schema:PropertyValue
78 N78ffafc94bd143eca017d7934d1bd0d6 schema:affiliation https://www.grid.ac/institutes/grid.261037.1
79 schema:familyName Ward
80 schema:givenName John Paul
81 rdf:type schema:Person
82 Nb207f80a18a74b7db69e1024bd3cd6af rdf:first N78ffafc94bd143eca017d7934d1bd0d6
83 rdf:rest rdf:nil
84 Nb4eeb83ea57645f3b05bc192958c52fc schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 Nc1ebb5c82b504e318c9d624adde0d6a6 schema:affiliation https://www.grid.ac/institutes/grid.5333.6
87 schema:familyName Fageot
88 schema:givenName Julien
89 rdf:type schema:Person
90 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
91 schema:name Mathematical Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
94 schema:name Pure Mathematics
95 rdf:type schema:DefinedTerm
96 sg:journal.1042645 schema:issn 1069-5869
97 1531-5851
98 schema:name Journal of Fourier Analysis and Applications
99 rdf:type schema:Periodical
100 sg:pub.10.1007/978-0-8176-4891-6_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015251699
101 https://doi.org/10.1007/978-0-8176-4891-6_5
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/978-0-8176-8134-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022374482
104 https://doi.org/10.1007/978-0-8176-8134-0
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/978-3-319-51911-1_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085185757
107 https://doi.org/10.1007/978-3-319-51911-1_5
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/978-3-642-87665-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109711179
110 https://doi.org/10.1007/978-3-642-87665-3
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/bf01077964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041386043
113 https://doi.org/10.1007/bf01077964
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/bf01216799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049276318
116 https://doi.org/10.1007/bf01216799
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/bf01894779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004433685
119 https://doi.org/10.1007/bf01894779
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s00041-001-0001-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041334189
122 https://doi.org/10.1007/s00041-001-0001-2
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s00041-013-9318-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024837020
125 https://doi.org/10.1007/s00041-013-9318-x
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s11766-013-3215-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049377683
128 https://doi.org/10.1007/s11766-013-3215-6
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s11868-011-0044-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003535505
131 https://doi.org/10.1007/s11868-011-0044-3
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s11868-015-0122-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1037212936
134 https://doi.org/10.1007/s11868-015-0122-z
135 rdf:type schema:CreativeWork
136 https://app.dimensions.ai/details/publication/pub.1022374482 schema:CreativeWork
137 https://doi.org/10.1002/cpa.3160230202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017710426
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/0021-9045(90)90079-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035477809
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.jmaa.2005.03.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029144603
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.jmaa.2016.02.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021304996
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/s0294-1449(16)30287-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083870273
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1070/im1997v061n06abeh000164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058168004
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1090/fic/052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098700021
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1090/s0002-9939-1969-0240835-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018666683
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1090/s0002-9939-1975-0365002-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000702241
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1090/s0002-9939-98-04319-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007317487
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1090/s0002-9947-07-04303-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041892376
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1090/s0025-5718-1984-0758197-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050874863
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1090/s0025-5718-1987-0878701-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037516024
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1090/s0894-0347-03-00444-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020031555
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/42.875199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170950
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/5.843002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061180138
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/5.993400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061180466
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/tsp.2005.843700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061799494
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1137/1.9781611970555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556216
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1137/s0036144501386986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877760
176 rdf:type schema:CreativeWork
177 https://doi.org/10.2307/1968102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069673545
178 rdf:type schema:CreativeWork
179 https://doi.org/10.2307/2374666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069901023
180 rdf:type schema:CreativeWork
181 https://doi.org/10.4064/sm-18-1-87-136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091703094
182 rdf:type schema:CreativeWork
183 https://www.grid.ac/institutes/grid.261037.1 schema:alternateName North Carolina Agricultural and Technical State University
184 schema:name Department of Mathematics, North Carolina A&T State University, 27411, Greensboro, NC, USA
185 rdf:type schema:Organization
186 https://www.grid.ac/institutes/grid.5333.6 schema:alternateName École Polytechnique Fédérale de Lausanne
187 schema:name Biomedical Imaging Group, École polytechnique fédérale de Lausanne (EPFL), Station 17, 1015, Lausanne, Switzerland
188 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...