Ontology type: schema:ScholarlyArticle Open Access: True
2019-04
AUTHORSYing-Fen Lin, Jean Ludwig, Carine Molitor-Braun
ABSTRACTWe establish a Fourier inversion theorem for general connected, simply connected nilpotent Lie groups G=exp(g) by showing that operator fields defined on suitable sub-manifolds of g∗ are images of Schwartz functions under the Fourier transform. As an application of this result, we provide a complete characterisation of a large class of invariant prime closed two-sided ideals of L1(G) as kernels of sets of irreducible representations of G. More... »
PAGES345-376
http://scigraph.springernature.com/pub.10.1007/s00041-017-9586-y
DOIhttp://dx.doi.org/10.1007/s00041-017-9586-y
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1093092337
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Queen's University Belfast",
"id": "https://www.grid.ac/institutes/grid.4777.3",
"name": [
"Pure Mathematics Research Centre, Queen\u2019s University Belfast, BT7 1NN, Belfast, UK"
],
"type": "Organization"
},
"familyName": "Lin",
"givenName": "Ying-Fen",
"id": "sg:person.010630360341.26",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010630360341.26"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institut \u00c9lie Cartan de Lorraine",
"id": "https://www.grid.ac/institutes/grid.462063.5",
"name": [
"Universit\u00e9 de Lorraine, Institut Elie Cartan de Lorraine, UMR 7502, 57045, Metz, France"
],
"type": "Organization"
},
"familyName": "Ludwig",
"givenName": "Jean",
"id": "sg:person.016447626116.20",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016447626116.20"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Luxembourg",
"id": "https://www.grid.ac/institutes/grid.16008.3f",
"name": [
"Unit\u00e9 de Recherche en Math\u00e9matiques, Universit\u00e9 du Luxembourg, 6, rue Coudenhove-Kalergi, 1359, Luxembourg, Luxembourg"
],
"type": "Organization"
},
"familyName": "Molitor-Braun",
"givenName": "Carine",
"id": "sg:person.015717525065.73",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015717525065.73"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1017/s0004972700031919",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003737749"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/s0004972700031919",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003737749"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1006/jfan.1999.3517",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007704784"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00761419",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022976533",
"https://doi.org/10.1007/bf00761419"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00761419",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022976533",
"https://doi.org/10.1007/bf00761419"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01231524",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032489516",
"https://doi.org/10.1007/bf01231524"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01456011",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044898709",
"https://doi.org/10.1007/bf01456011"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01456011",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044898709",
"https://doi.org/10.1007/bf01456011"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01450760",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049785026",
"https://doi.org/10.1007/bf01450760"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01450760",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049785026",
"https://doi.org/10.1007/bf01450760"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1070/rm1962v017n04abeh004118",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058193696"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2140/pjm.1977.73.329",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069067128"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4153/cjm-2001-038-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072268176"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1515/9783110874235",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1096967782"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-04",
"datePublishedReg": "2019-04-01",
"description": "We establish a Fourier inversion theorem for general connected, simply connected nilpotent Lie groups G=exp(g) by showing that operator fields defined on suitable sub-manifolds of g\u2217 are images of Schwartz functions under the Fourier transform. As an application of this result, we provide a complete characterisation of a large class of invariant prime closed two-sided ideals of L1(G) as kernels of sets of irreducible representations of G.",
"genre": "research_article",
"id": "sg:pub.10.1007/s00041-017-9586-y",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1042645",
"issn": [
"1069-5869",
"1531-5851"
],
"name": "Journal of Fourier Analysis and Applications",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "25"
}
],
"name": "Nilpotent Lie Groups: Fourier Inversion and Prime Ideals",
"pagination": "345-376",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"8a9bb28b48484e56775e6884c1163ef065a0776114fb0307434816792fcf2556"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00041-017-9586-y"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1093092337"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00041-017-9586-y",
"https://app.dimensions.ai/details/publication/pub.1093092337"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T10:19",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54322_00000001.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs00041-017-9586-y"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00041-017-9586-y'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00041-017-9586-y'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00041-017-9586-y'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00041-017-9586-y'
This table displays all metadata directly associated to this object as RDF triples.
115 TRIPLES
21 PREDICATES
37 URIs
19 LITERALS
7 BLANK NODES