Geometric Separation in R3 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Kanghui Guo, Demetrio Labate

ABSTRACT

The geometric separation problem, initially posed by Donoho and Kutyniok (Commun Pure Appl Math 66:1–47, 2013), aims to separate a distribution containing a non-trivial superposition of point and curvilinear singularities into its distinct geometric constituents. The solution proposed in Donoho and Kutyniok (2013) considers expansions with respect to a combined wavelet-curvelet dictionary and applies an ℓ1-norm minimization over the expansion coefficients to achieve separation asymptotically at fine scales. However, the original proof of this result uses a heavy machinery relying on sparse representations of Fourier integral operators which does not extend directly to the 3D setting. In this paper, we extend the geometric separation result to the 3D setting using a novel and simpler argument which relies in part on techniques developed by the authors for the shearlet-based analysis of curvilinear edges. Our new result also yields a significantly simpler proof of the original 2D geometric separation problem and extends a prior result by the authors which was limited to piecewise linear singularities. More... »

PAGES

1-23

References to SciGraph publications

  • 2014. Microlocal Analysis of Singularities from Directional Multiscale Representations in APPROXIMATION THEORY XIV: SAN ANTONIO 2013
  • 2014-02. Analysis of Inpainting via Clustered Sparsity and Microlocal Analysis in JOURNAL OF MATHEMATICAL IMAGING AND VISION
  • 2015-08. Geometric Separation of Singularities Using Combined Multiscale Dictionaries in JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS
  • 2017-04. Microlocal analysis of edge flatness through directional multiscale representations in ADVANCES IN COMPUTATIONAL MATHEMATICS
  • 2012-06. Characterization of Piecewise-Smooth Surfaces Using the 3D Continuous Shearlet Transform in JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00041-017-9569-z

    DOI

    http://dx.doi.org/10.1007/s00041-017-9569-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1092245998


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Missouri State University", 
              "id": "https://www.grid.ac/institutes/grid.260126.1", 
              "name": [
                "Department of Mathematics, Missouri State University, 65804, Springfield, MO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guo", 
            "givenName": "Kanghui", 
            "id": "sg:person.014451676745.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014451676745.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Houston", 
              "id": "https://www.grid.ac/institutes/grid.266436.3", 
              "name": [
                "Department of Mathematics, University of Houston, 77204, Houston, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Labate", 
            "givenName": "Demetrio", 
            "id": "sg:person.0631651374.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631651374.48"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.acha.2010.08.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003867768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.acha.2008.10.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008517782"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.20132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013563793"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.20132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013563793"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.acha.2015.08.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014357535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00041-011-9209-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014712277", 
              "https://doi.org/10.1007/s00041-011-9209-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10444-016-9486-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019560820", 
              "https://doi.org/10.1007/s10444-016-9486-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10444-016-9486-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019560820", 
              "https://doi.org/10.1007/s10444-016-9486-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.acha.2013.02.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022424373"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.21418", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025286731"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00041-014-9381-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025305202", 
              "https://doi.org/10.1007/s00041-014-9381-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.20124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026640051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.20124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026640051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.10116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026949656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-06404-8_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027586306", 
              "https://doi.org/10.1007/978-3-319-06404-8_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.613494", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028548010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.acha.2006.05.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030095409"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rsta.1999.0444", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030564745"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10851-013-0422-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030696437", 
              "https://doi.org/10.1007/s10851-013-0422-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0165-1684(03)00150-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036468516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0165-1684(03)00150-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036468516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1076-5670(04)32006-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047210870"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.acha.2007.09.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052240223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/mmnp/20138106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057046306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9947-08-04700-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059334764"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/78.258082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061228470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tip.2002.802527", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061640757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tip.2005.852206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061641204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsp.2002.806592", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061798787"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/060649781", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062849007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/080741537", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062855354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/100813397", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062859618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/110844726", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062865231"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/110854497", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062865543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s003614450037906x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062877747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/psapm/047/1268000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089195558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/5314", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098871684"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02", 
        "datePublishedReg": "2019-02-01", 
        "description": "The geometric separation problem, initially posed by Donoho and Kutyniok (Commun Pure Appl Math 66:1\u201347, 2013), aims to separate a distribution containing a non-trivial superposition of point and curvilinear singularities into its distinct geometric constituents. The solution proposed in Donoho and Kutyniok (2013) considers expansions with respect to a combined wavelet-curvelet dictionary and applies an \u21131-norm minimization over the expansion coefficients to achieve separation asymptotically at fine scales. However, the original proof of this result uses a heavy machinery relying on sparse representations of Fourier integral operators which does not extend directly to the 3D setting. In this paper, we extend the geometric separation result to the 3D setting using a novel and simpler argument which relies in part on techniques developed by the authors for the shearlet-based analysis of curvilinear edges. Our new result also yields a significantly simpler proof of the original 2D geometric separation problem and extends a prior result by the authors which was limited to piecewise linear singularities.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00041-017-9569-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6937531", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1042645", 
            "issn": [
              "1069-5869", 
              "1531-5851"
            ], 
            "name": "Journal of Fourier Analysis and Applications", 
            "type": "Periodical"
          }
        ], 
        "name": "Geometric Separation in R3", 
        "pagination": "1-23", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f36cfff4a6c55427fe63680f5cfd31aecc7e63ae615564344d165d58e52ae97e"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00041-017-9569-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1092245998"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00041-017-9569-z", 
          "https://app.dimensions.ai/details/publication/pub.1092245998"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:18", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000562.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00041-017-9569-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00041-017-9569-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00041-017-9569-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00041-017-9569-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00041-017-9569-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    171 TRIPLES      21 PREDICATES      58 URIs      17 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00041-017-9569-z schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Na2235300ced04bdebb6bbab0aeb5bac9
    4 schema:citation sg:pub.10.1007/978-3-319-06404-8_10
    5 sg:pub.10.1007/s00041-011-9209-y
    6 sg:pub.10.1007/s00041-014-9381-y
    7 sg:pub.10.1007/s10444-016-9486-8
    8 sg:pub.10.1007/s10851-013-0422-y
    9 https://doi.org/10.1002/cpa.10116
    10 https://doi.org/10.1002/cpa.20124
    11 https://doi.org/10.1002/cpa.20132
    12 https://doi.org/10.1002/cpa.21418
    13 https://doi.org/10.1016/j.acha.2006.05.003
    14 https://doi.org/10.1016/j.acha.2007.09.003
    15 https://doi.org/10.1016/j.acha.2008.10.004
    16 https://doi.org/10.1016/j.acha.2010.08.004
    17 https://doi.org/10.1016/j.acha.2013.02.001
    18 https://doi.org/10.1016/j.acha.2015.08.006
    19 https://doi.org/10.1016/s0165-1684(03)00150-6
    20 https://doi.org/10.1016/s1076-5670(04)32006-9
    21 https://doi.org/10.1051/mmnp/20138106
    22 https://doi.org/10.1090/psapm/047/1268000
    23 https://doi.org/10.1090/s0002-9947-08-04700-4
    24 https://doi.org/10.1098/rsta.1999.0444
    25 https://doi.org/10.1109/78.258082
    26 https://doi.org/10.1109/tip.2002.802527
    27 https://doi.org/10.1109/tip.2005.852206
    28 https://doi.org/10.1109/tsp.2002.806592
    29 https://doi.org/10.1117/12.613494
    30 https://doi.org/10.1137/060649781
    31 https://doi.org/10.1137/080741537
    32 https://doi.org/10.1137/100813397
    33 https://doi.org/10.1137/110844726
    34 https://doi.org/10.1137/110854497
    35 https://doi.org/10.1137/s003614450037906x
    36 https://doi.org/10.1142/5314
    37 schema:datePublished 2019-02
    38 schema:datePublishedReg 2019-02-01
    39 schema:description The geometric separation problem, initially posed by Donoho and Kutyniok (Commun Pure Appl Math 66:1–47, 2013), aims to separate a distribution containing a non-trivial superposition of point and curvilinear singularities into its distinct geometric constituents. The solution proposed in Donoho and Kutyniok (2013) considers expansions with respect to a combined wavelet-curvelet dictionary and applies an ℓ1-norm minimization over the expansion coefficients to achieve separation asymptotically at fine scales. However, the original proof of this result uses a heavy machinery relying on sparse representations of Fourier integral operators which does not extend directly to the 3D setting. In this paper, we extend the geometric separation result to the 3D setting using a novel and simpler argument which relies in part on techniques developed by the authors for the shearlet-based analysis of curvilinear edges. Our new result also yields a significantly simpler proof of the original 2D geometric separation problem and extends a prior result by the authors which was limited to piecewise linear singularities.
    40 schema:genre research_article
    41 schema:inLanguage en
    42 schema:isAccessibleForFree false
    43 schema:isPartOf sg:journal.1042645
    44 schema:name Geometric Separation in R3
    45 schema:pagination 1-23
    46 schema:productId N21da2e7d85a04014b21409bbed2644fd
    47 N36c3792fbc9a48fda8183746d38bafe4
    48 Nd49f7551407047d99089537edb6759f6
    49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092245998
    50 https://doi.org/10.1007/s00041-017-9569-z
    51 schema:sdDatePublished 2019-04-10T14:18
    52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    53 schema:sdPublisher Na34f68dc11d6420c8ef5c65848222e12
    54 schema:url https://link.springer.com/10.1007%2Fs00041-017-9569-z
    55 sgo:license sg:explorer/license/
    56 sgo:sdDataset articles
    57 rdf:type schema:ScholarlyArticle
    58 N21da2e7d85a04014b21409bbed2644fd schema:name doi
    59 schema:value 10.1007/s00041-017-9569-z
    60 rdf:type schema:PropertyValue
    61 N36c3792fbc9a48fda8183746d38bafe4 schema:name dimensions_id
    62 schema:value pub.1092245998
    63 rdf:type schema:PropertyValue
    64 N8c3e3f27dab04da48b6ab7c98b2c170e rdf:first sg:person.0631651374.48
    65 rdf:rest rdf:nil
    66 Na2235300ced04bdebb6bbab0aeb5bac9 rdf:first sg:person.014451676745.31
    67 rdf:rest N8c3e3f27dab04da48b6ab7c98b2c170e
    68 Na34f68dc11d6420c8ef5c65848222e12 schema:name Springer Nature - SN SciGraph project
    69 rdf:type schema:Organization
    70 Nd49f7551407047d99089537edb6759f6 schema:name readcube_id
    71 schema:value f36cfff4a6c55427fe63680f5cfd31aecc7e63ae615564344d165d58e52ae97e
    72 rdf:type schema:PropertyValue
    73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Mathematical Sciences
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Pure Mathematics
    78 rdf:type schema:DefinedTerm
    79 sg:grant.6937531 http://pending.schema.org/fundedItem sg:pub.10.1007/s00041-017-9569-z
    80 rdf:type schema:MonetaryGrant
    81 sg:journal.1042645 schema:issn 1069-5869
    82 1531-5851
    83 schema:name Journal of Fourier Analysis and Applications
    84 rdf:type schema:Periodical
    85 sg:person.014451676745.31 schema:affiliation https://www.grid.ac/institutes/grid.260126.1
    86 schema:familyName Guo
    87 schema:givenName Kanghui
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014451676745.31
    89 rdf:type schema:Person
    90 sg:person.0631651374.48 schema:affiliation https://www.grid.ac/institutes/grid.266436.3
    91 schema:familyName Labate
    92 schema:givenName Demetrio
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631651374.48
    94 rdf:type schema:Person
    95 sg:pub.10.1007/978-3-319-06404-8_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027586306
    96 https://doi.org/10.1007/978-3-319-06404-8_10
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/s00041-011-9209-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1014712277
    99 https://doi.org/10.1007/s00041-011-9209-y
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/s00041-014-9381-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1025305202
    102 https://doi.org/10.1007/s00041-014-9381-y
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/s10444-016-9486-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019560820
    105 https://doi.org/10.1007/s10444-016-9486-8
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/s10851-013-0422-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1030696437
    108 https://doi.org/10.1007/s10851-013-0422-y
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1002/cpa.10116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026949656
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1002/cpa.20124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026640051
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1002/cpa.20132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013563793
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1002/cpa.21418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025286731
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/j.acha.2006.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030095409
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/j.acha.2007.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052240223
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/j.acha.2008.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008517782
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/j.acha.2010.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003867768
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/j.acha.2013.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022424373
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/j.acha.2015.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014357535
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/s0165-1684(03)00150-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036468516
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/s1076-5670(04)32006-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047210870
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1051/mmnp/20138106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057046306
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1090/psapm/047/1268000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089195558
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1090/s0002-9947-08-04700-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059334764
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1098/rsta.1999.0444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030564745
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1109/78.258082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061228470
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1109/tip.2002.802527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061640757
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1109/tip.2005.852206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061641204
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1109/tsp.2002.806592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061798787
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1117/12.613494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028548010
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1137/060649781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062849007
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1137/080741537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062855354
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1137/100813397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062859618
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1137/110844726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062865231
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1137/110854497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062865543
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1137/s003614450037906x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877747
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1142/5314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098871684
    165 rdf:type schema:CreativeWork
    166 https://www.grid.ac/institutes/grid.260126.1 schema:alternateName Missouri State University
    167 schema:name Department of Mathematics, Missouri State University, 65804, Springfield, MO, USA
    168 rdf:type schema:Organization
    169 https://www.grid.ac/institutes/grid.266436.3 schema:alternateName University of Houston
    170 schema:name Department of Mathematics, University of Houston, 77204, Houston, TX, USA
    171 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...