Anderson localization for two interacting quasiperiodic particles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Jean Bourgain, Ilya Kachkovskiy

ABSTRACT

We consider a system of two discrete quasiperiodic 1D particles as an operator on ℓ2(Z2) and establish Anderson localization at large disorder, assuming the potential has no cosine-type symmetries. In the presence of symmetries, we show localization outside of a neighborhood of finitely many energies. One can also add a deterministic background potential of low complexity, which includes periodic backgrounds and finite range interaction potentials. Such background potentials can only take finitely many values, and the excluded energies in the symmetric case are associated to those values. More... »

PAGES

3-43

References to SciGraph publications

  • 2008-11. A proof of Yomdin-Gromov’s Algebraic Lemma in ISRAEL JOURNAL OF MATHEMATICS
  • 2009-09. Localization Bounds for Multiparticle Systems in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1968-10. Projections of semi-analytic sets in FUNCTIONAL ANALYSIS AND ITS APPLICATIONS
  • 1987-10. Ck-resolution of semialgebraic mappings. Addendum toVolume growth and entropy in ISRAEL JOURNAL OF MATHEMATICS
  • 2015-12. Freed by interaction kinetic states in the Harper model in THE EUROPEAN PHYSICAL JOURNAL B
  • 2014. Multi-scale Analysis for Random Quantum Systems with Interaction in NONE
  • 2002-12. On the spectrum of lattice Schrödinger operators with deterministic potential in JOURNAL D'ANALYSE MATHÉMATIQUE
  • 2002-03. Anderson localization for Schrödinger operators on Z2 with quasi-periodic potential in ACTA MATHEMATICA
  • 1998. Real Algebraic Geometry in NONE
  • 2003-02. Delocalization in Random Polymer Models in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00039-019-00478-4

    DOI

    http://dx.doi.org/10.1007/s00039-019-00478-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112089766


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute for Advanced Study", 
              "id": "https://www.grid.ac/institutes/grid.78989.37", 
              "name": [
                "School of Mathematics, Institute for Advanced Study, 08540, Princeton, NJ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bourgain", 
            "givenName": "Jean", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Michigan State University", 
              "id": "https://www.grid.ac/institutes/grid.17088.36", 
              "name": [
                "Department of Mathematics, Michigan State University, 48824, East Lansing, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kachkovskiy", 
            "givenName": "Ilya", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01075680", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012929690", 
              "https://doi.org/10.1007/bf01075680"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02766216", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013986140", 
              "https://doi.org/10.1007/bf02766216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11856-008-1069-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017888113", 
              "https://doi.org/10.1007/s11856-008-1069-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02868469", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020124466", 
              "https://doi.org/10.1007/bf02868469"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02868469", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020124466", 
              "https://doi.org/10.1007/bf02868469"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjb/e2015-60733-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020159028", 
              "https://doi.org/10.1140/epjb/e2015-60733-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-002-0757-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026256753", 
              "https://doi.org/10.1007/s00220-002-0757-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02392795", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029249598", 
              "https://doi.org/10.1007/bf02392795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1049647592", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-03718-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049647592", 
              "https://doi.org/10.1007/978-3-662-03718-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-03718-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049647592", 
              "https://doi.org/10.1007/978-3-662-03718-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-009-0792-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049998851", 
              "https://doi.org/10.1007/s00220-009-0792-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-009-0792-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049998851", 
              "https://doi.org/10.1007/s00220-009-0792-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-009-0792-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049998851", 
              "https://doi.org/10.1007/s00220-009-0792-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1051397018", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4614-8226-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051397018", 
              "https://doi.org/10.1007/978-1-4614-8226-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4614-8226-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051397018", 
              "https://doi.org/10.1007/978-1-4614-8226-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/s0012-7094-06-13336-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064415615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2661356", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070051001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/3062114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070191866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/3597190", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070385304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4171/rmi/188", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072320466"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4171/jst/156", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084454613"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/9781400837144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096909966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/mmono/150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101567926"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02", 
        "datePublishedReg": "2019-02-01", 
        "description": "We consider a system of two discrete quasiperiodic 1D particles as an operator on \u21132(Z2) and establish Anderson localization at large disorder, assuming the potential has no cosine-type symmetries. In the presence of symmetries, we show localization outside of a neighborhood of finitely many energies. One can also add a deterministic background potential of low complexity, which includes periodic backgrounds and finite range interaction potentials. Such background potentials can only take finitely many values, and the excluded energies in the symmetric case are associated to those values.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00039-019-00478-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136023", 
            "issn": [
              "1016-443X", 
              "1420-8970"
            ], 
            "name": "Geometric and Functional Analysis", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "29"
          }
        ], 
        "name": "Anderson localization for two interacting quasiperiodic particles", 
        "pagination": "3-43", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6b2ff45821ef71084fc75ef1a627f32e63a53e2b2a3c057818480c06f5a5f785"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00039-019-00478-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112089766"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00039-019-00478-4", 
          "https://app.dimensions.ai/details/publication/pub.1112089766"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:23", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87091_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00039-019-00478-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00039-019-00478-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00039-019-00478-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00039-019-00478-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00039-019-00478-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    137 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00039-019-00478-4 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nb7b7f75a0d6b40f1927a91400b0e4b5b
    4 schema:citation sg:pub.10.1007/978-1-4614-8226-0
    5 sg:pub.10.1007/978-3-662-03718-8
    6 sg:pub.10.1007/bf01075680
    7 sg:pub.10.1007/bf02392795
    8 sg:pub.10.1007/bf02766216
    9 sg:pub.10.1007/bf02868469
    10 sg:pub.10.1007/s00220-002-0757-5
    11 sg:pub.10.1007/s00220-009-0792-6
    12 sg:pub.10.1007/s11856-008-1069-z
    13 sg:pub.10.1140/epjb/e2015-60733-9
    14 https://app.dimensions.ai/details/publication/pub.1049647592
    15 https://app.dimensions.ai/details/publication/pub.1051397018
    16 https://doi.org/10.1090/mmono/150
    17 https://doi.org/10.1215/s0012-7094-06-13336-7
    18 https://doi.org/10.1515/9781400837144
    19 https://doi.org/10.2307/2661356
    20 https://doi.org/10.2307/3062114
    21 https://doi.org/10.2307/3597190
    22 https://doi.org/10.4171/jst/156
    23 https://doi.org/10.4171/rmi/188
    24 schema:datePublished 2019-02
    25 schema:datePublishedReg 2019-02-01
    26 schema:description We consider a system of two discrete quasiperiodic 1D particles as an operator on ℓ2(Z2) and establish Anderson localization at large disorder, assuming the potential has no cosine-type symmetries. In the presence of symmetries, we show localization outside of a neighborhood of finitely many energies. One can also add a deterministic background potential of low complexity, which includes periodic backgrounds and finite range interaction potentials. Such background potentials can only take finitely many values, and the excluded energies in the symmetric case are associated to those values.
    27 schema:genre research_article
    28 schema:inLanguage en
    29 schema:isAccessibleForFree false
    30 schema:isPartOf N355d096cc17b43b5b1912677b2d73e51
    31 Nb1d4931938e84559b97f8fe179f0ae7d
    32 sg:journal.1136023
    33 schema:name Anderson localization for two interacting quasiperiodic particles
    34 schema:pagination 3-43
    35 schema:productId N5f3c0265bfc54ad09e4e9fcb21ace159
    36 N75d301f68f2a4e12a68f07771ab7cad0
    37 Ne312c7f192294d1bb06ddbf145370361
    38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112089766
    39 https://doi.org/10.1007/s00039-019-00478-4
    40 schema:sdDatePublished 2019-04-11T12:23
    41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    42 schema:sdPublisher N808a893cc6394839a1011baf0e54b782
    43 schema:url https://link.springer.com/10.1007%2Fs00039-019-00478-4
    44 sgo:license sg:explorer/license/
    45 sgo:sdDataset articles
    46 rdf:type schema:ScholarlyArticle
    47 N12d9551f464c4f22b9667afabf8ac475 rdf:first Nfeb91b96ffad49f2a8b120541e6dc901
    48 rdf:rest rdf:nil
    49 N355d096cc17b43b5b1912677b2d73e51 schema:issueNumber 1
    50 rdf:type schema:PublicationIssue
    51 N5f3c0265bfc54ad09e4e9fcb21ace159 schema:name readcube_id
    52 schema:value 6b2ff45821ef71084fc75ef1a627f32e63a53e2b2a3c057818480c06f5a5f785
    53 rdf:type schema:PropertyValue
    54 N75d301f68f2a4e12a68f07771ab7cad0 schema:name dimensions_id
    55 schema:value pub.1112089766
    56 rdf:type schema:PropertyValue
    57 N808a893cc6394839a1011baf0e54b782 schema:name Springer Nature - SN SciGraph project
    58 rdf:type schema:Organization
    59 Nb1d4931938e84559b97f8fe179f0ae7d schema:volumeNumber 29
    60 rdf:type schema:PublicationVolume
    61 Nb7b7f75a0d6b40f1927a91400b0e4b5b rdf:first Nbd04f92ff4214f37b59317c63c7ce8e3
    62 rdf:rest N12d9551f464c4f22b9667afabf8ac475
    63 Nbd04f92ff4214f37b59317c63c7ce8e3 schema:affiliation https://www.grid.ac/institutes/grid.78989.37
    64 schema:familyName Bourgain
    65 schema:givenName Jean
    66 rdf:type schema:Person
    67 Ne312c7f192294d1bb06ddbf145370361 schema:name doi
    68 schema:value 10.1007/s00039-019-00478-4
    69 rdf:type schema:PropertyValue
    70 Nfeb91b96ffad49f2a8b120541e6dc901 schema:affiliation https://www.grid.ac/institutes/grid.17088.36
    71 schema:familyName Kachkovskiy
    72 schema:givenName Ilya
    73 rdf:type schema:Person
    74 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Mathematical Sciences
    76 rdf:type schema:DefinedTerm
    77 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Pure Mathematics
    79 rdf:type schema:DefinedTerm
    80 sg:journal.1136023 schema:issn 1016-443X
    81 1420-8970
    82 schema:name Geometric and Functional Analysis
    83 rdf:type schema:Periodical
    84 sg:pub.10.1007/978-1-4614-8226-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051397018
    85 https://doi.org/10.1007/978-1-4614-8226-0
    86 rdf:type schema:CreativeWork
    87 sg:pub.10.1007/978-3-662-03718-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049647592
    88 https://doi.org/10.1007/978-3-662-03718-8
    89 rdf:type schema:CreativeWork
    90 sg:pub.10.1007/bf01075680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012929690
    91 https://doi.org/10.1007/bf01075680
    92 rdf:type schema:CreativeWork
    93 sg:pub.10.1007/bf02392795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029249598
    94 https://doi.org/10.1007/bf02392795
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/bf02766216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013986140
    97 https://doi.org/10.1007/bf02766216
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/bf02868469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020124466
    100 https://doi.org/10.1007/bf02868469
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/s00220-002-0757-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026256753
    103 https://doi.org/10.1007/s00220-002-0757-5
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/s00220-009-0792-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049998851
    106 https://doi.org/10.1007/s00220-009-0792-6
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/s11856-008-1069-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1017888113
    109 https://doi.org/10.1007/s11856-008-1069-z
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1140/epjb/e2015-60733-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020159028
    112 https://doi.org/10.1140/epjb/e2015-60733-9
    113 rdf:type schema:CreativeWork
    114 https://app.dimensions.ai/details/publication/pub.1049647592 schema:CreativeWork
    115 https://app.dimensions.ai/details/publication/pub.1051397018 schema:CreativeWork
    116 https://doi.org/10.1090/mmono/150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101567926
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1215/s0012-7094-06-13336-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064415615
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1515/9781400837144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096909966
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.2307/2661356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070051001
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.2307/3062114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070191866
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.2307/3597190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070385304
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.4171/jst/156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084454613
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.4171/rmi/188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072320466
    131 rdf:type schema:CreativeWork
    132 https://www.grid.ac/institutes/grid.17088.36 schema:alternateName Michigan State University
    133 schema:name Department of Mathematics, Michigan State University, 48824, East Lansing, MI, USA
    134 rdf:type schema:Organization
    135 https://www.grid.ac/institutes/grid.78989.37 schema:alternateName Institute for Advanced Study
    136 schema:name School of Mathematics, Institute for Advanced Study, 08540, Princeton, NJ, USA
    137 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...