Effective Estimates on Integral Quadratic Forms: Masser’s Conjecture, Generators of Orthogonal Groups, and Bounds in Reduction Theory View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-06

AUTHORS

Han Li, Gregory A. Margulis

ABSTRACT

In this paper we prove a conjecture of David Masser on small height integral equivalence between integral quadratic forms. Using our resolution of Masser’s conjecture we show that integral orthogonal groups are generated by small elements which is essentially an effective version of Siegel’s theorem on the finite generation of these groups. We also obtain new estimates on reduction theory and representation theory of integral quadratic forms. Our line of attack is to make and exploit the connections between certain problems about quadratic forms and group actions, whence we may study the problem in the well-developed theory of homogeneous dynamics, arithmetic groups, and the spectral theory of automorphic forms. More... »

PAGES

874-908

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00039-016-0379-2

DOI

http://dx.doi.org/10.1007/s00039-016-0379-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052481663


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wesleyan University", 
          "id": "https://www.grid.ac/institutes/grid.268117.b", 
          "name": [
            "Department of Mathematics and Computer Science, Wesleyan University, 265 Church Street, 06459, Middletown, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Han", 
        "id": "sg:person.013715447117.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013715447117.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Mathematics, Yale University, 442 Dunham Lab, 10 Hillhouse Avenue, 06511, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Margulis", 
        "givenName": "Gregory A.", 
        "id": "sg:person.01247226110.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247226110.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bfb0062491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001309388", 
          "https://doi.org/10.1007/bfb0062491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00222-002-0253-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003734370", 
          "https://doi.org/10.1007/s00222-002-0253-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-0141-7_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010144049", 
          "https://doi.org/10.1007/978-94-011-0141-7_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02940759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011567416", 
          "https://doi.org/10.1007/bf02940759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01900681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016142923", 
          "https://doi.org/10.1007/bf01900681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01900681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016142923", 
          "https://doi.org/10.1007/bf01900681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00222-009-0177-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021515131", 
          "https://doi.org/10.1007/s00222-009-0177-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00222-009-0177-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021515131", 
          "https://doi.org/10.1007/s00222-009-0177-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crelle.2011.128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024907203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4722-7_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029180033", 
          "https://doi.org/10.1007/978-1-4612-4722-7_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-7488-3_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029882692", 
          "https://doi.org/10.1007/978-1-4614-7488-3_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02698841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031421448", 
          "https://doi.org/10.1007/bf02698841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0058988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032392548", 
          "https://doi.org/10.1007/bfb0058988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0058988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032392548", 
          "https://doi.org/10.1007/bfb0058988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-314x(83)90051-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034489163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01388860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034702929", 
          "https://doi.org/10.1007/bf01388860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crll.1998.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034995848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1980-0574794-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037125545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1039164941", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1039164941", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01243900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041575179", 
          "https://doi.org/10.1007/bf01243900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/form.2011.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043023338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/s0024611502013898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043060328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0894-0347-02-00410-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044061209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00222-007-0077-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044089348", 
          "https://doi.org/10.1007/s00222-007-0077-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00222-007-0077-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044089348", 
          "https://doi.org/10.1007/s00222-007-0077-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11856-014-1110-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045246490", 
          "https://doi.org/10.1007/s11856-014-1110-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0143385700003382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053860587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0143385700003382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053860587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0305004107000710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053870495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0305004100068481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054037967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/s0025579300001054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062055247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-02-11314-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064415274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-93-07107-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064419872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/120997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069397470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2372837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069899448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2373052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069899637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3792/pja/1195523378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071428967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4007/annals.2011.174.1.18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071867348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/jems/520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072318137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/jdg/1214441370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084459607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/conm/587/11673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089186319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/pspum/008/0182610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089195944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511755170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098666941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-51445-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109709995", 
          "https://doi.org/10.1007/978-3-642-51445-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-51445-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109709995", 
          "https://doi.org/10.1007/978-3-642-51445-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-06", 
    "datePublishedReg": "2016-06-01", 
    "description": "In this paper we prove a conjecture of David Masser on small height integral equivalence between integral quadratic forms. Using our resolution of Masser\u2019s conjecture we show that integral orthogonal groups are generated by small elements which is essentially an effective version of Siegel\u2019s theorem on the finite generation of these groups. We also obtain new estimates on reduction theory and representation theory of integral quadratic forms. Our line of attack is to make and exploit the connections between certain problems about quadratic forms and group actions, whence we may study the problem in the well-developed theory of homogeneous dynamics, arithmetic groups, and the spectral theory of automorphic forms.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00039-016-0379-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136023", 
        "issn": [
          "1016-443X", 
          "1420-8970"
        ], 
        "name": "Geometric and Functional Analysis", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "Effective Estimates on Integral Quadratic Forms: Masser\u2019s Conjecture, Generators of Orthogonal Groups, and Bounds in Reduction Theory", 
    "pagination": "874-908", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f9fcfde27b423c3618045843e17f0720c73c20241bcd4e24a566342f9c13c7b8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00039-016-0379-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052481663"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00039-016-0379-2", 
      "https://app.dimensions.ai/details/publication/pub.1052481663"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000596.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00039-016-0379-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00039-016-0379-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00039-016-0379-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00039-016-0379-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00039-016-0379-2'


 

This table displays all metadata directly associated to this object as RDF triples.

202 TRIPLES      21 PREDICATES      66 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00039-016-0379-2 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nbcf07532cb7d414b80c0c1d0977d2e7b
4 schema:citation sg:pub.10.1007/978-1-4612-4722-7_6
5 sg:pub.10.1007/978-1-4614-7488-3_9
6 sg:pub.10.1007/978-3-642-51445-6
7 sg:pub.10.1007/978-94-011-0141-7_8
8 sg:pub.10.1007/bf01243900
9 sg:pub.10.1007/bf01388860
10 sg:pub.10.1007/bf01900681
11 sg:pub.10.1007/bf02698841
12 sg:pub.10.1007/bf02940759
13 sg:pub.10.1007/bfb0058988
14 sg:pub.10.1007/bfb0062491
15 sg:pub.10.1007/s00222-002-0253-8
16 sg:pub.10.1007/s00222-007-0077-7
17 sg:pub.10.1007/s00222-009-0177-7
18 sg:pub.10.1007/s11856-014-1110-3
19 https://app.dimensions.ai/details/publication/pub.1039164941
20 https://doi.org/10.1016/0022-314x(83)90051-3
21 https://doi.org/10.1017/cbo9780511755170
22 https://doi.org/10.1017/s0143385700003382
23 https://doi.org/10.1017/s0305004100068481
24 https://doi.org/10.1017/s0305004107000710
25 https://doi.org/10.1090/conm/587/11673
26 https://doi.org/10.1090/pspum/008/0182610
27 https://doi.org/10.1090/s0002-9947-1980-0574794-0
28 https://doi.org/10.1090/s0894-0347-02-00410-1
29 https://doi.org/10.1112/s0024611502013898
30 https://doi.org/10.1112/s0025579300001054
31 https://doi.org/10.1215/s0012-7094-02-11314-3
32 https://doi.org/10.1215/s0012-7094-93-07107-4
33 https://doi.org/10.1515/crelle.2011.128
34 https://doi.org/10.1515/crll.1998.002
35 https://doi.org/10.1515/form.2011.050
36 https://doi.org/10.2307/120997
37 https://doi.org/10.2307/2372837
38 https://doi.org/10.2307/2373052
39 https://doi.org/10.3792/pja/1195523378
40 https://doi.org/10.4007/annals.2011.174.1.18
41 https://doi.org/10.4171/jems/520
42 https://doi.org/10.4310/jdg/1214441370
43 schema:datePublished 2016-06
44 schema:datePublishedReg 2016-06-01
45 schema:description In this paper we prove a conjecture of David Masser on small height integral equivalence between integral quadratic forms. Using our resolution of Masser’s conjecture we show that integral orthogonal groups are generated by small elements which is essentially an effective version of Siegel’s theorem on the finite generation of these groups. We also obtain new estimates on reduction theory and representation theory of integral quadratic forms. Our line of attack is to make and exploit the connections between certain problems about quadratic forms and group actions, whence we may study the problem in the well-developed theory of homogeneous dynamics, arithmetic groups, and the spectral theory of automorphic forms.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree false
49 schema:isPartOf N56857e017484495d81100dc2e4d69581
50 Nc310539c78524f90a7943a0742becd51
51 sg:journal.1136023
52 schema:name Effective Estimates on Integral Quadratic Forms: Masser’s Conjecture, Generators of Orthogonal Groups, and Bounds in Reduction Theory
53 schema:pagination 874-908
54 schema:productId N504b8cc83b86424d80fd33d3df3d8124
55 N9af790b38b624c3e9ed75f115b9ffeca
56 Na0bf91fbbaed4b5ab2cd9315356a5a45
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052481663
58 https://doi.org/10.1007/s00039-016-0379-2
59 schema:sdDatePublished 2019-04-10T15:13
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Nba37abddd4e24e69a1ca2e248309a326
62 schema:url http://link.springer.com/10.1007/s00039-016-0379-2
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N0c06d2f69d6e4a8dbef107bc7016172a rdf:first sg:person.01247226110.63
67 rdf:rest rdf:nil
68 N504b8cc83b86424d80fd33d3df3d8124 schema:name readcube_id
69 schema:value f9fcfde27b423c3618045843e17f0720c73c20241bcd4e24a566342f9c13c7b8
70 rdf:type schema:PropertyValue
71 N56857e017484495d81100dc2e4d69581 schema:issueNumber 3
72 rdf:type schema:PublicationIssue
73 N9af790b38b624c3e9ed75f115b9ffeca schema:name doi
74 schema:value 10.1007/s00039-016-0379-2
75 rdf:type schema:PropertyValue
76 Na0bf91fbbaed4b5ab2cd9315356a5a45 schema:name dimensions_id
77 schema:value pub.1052481663
78 rdf:type schema:PropertyValue
79 Nba37abddd4e24e69a1ca2e248309a326 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 Nbcf07532cb7d414b80c0c1d0977d2e7b rdf:first sg:person.013715447117.38
82 rdf:rest N0c06d2f69d6e4a8dbef107bc7016172a
83 Nc310539c78524f90a7943a0742becd51 schema:volumeNumber 26
84 rdf:type schema:PublicationVolume
85 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
86 schema:name Mathematical Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
89 schema:name Pure Mathematics
90 rdf:type schema:DefinedTerm
91 sg:journal.1136023 schema:issn 1016-443X
92 1420-8970
93 schema:name Geometric and Functional Analysis
94 rdf:type schema:Periodical
95 sg:person.01247226110.63 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
96 schema:familyName Margulis
97 schema:givenName Gregory A.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247226110.63
99 rdf:type schema:Person
100 sg:person.013715447117.38 schema:affiliation https://www.grid.ac/institutes/grid.268117.b
101 schema:familyName Li
102 schema:givenName Han
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013715447117.38
104 rdf:type schema:Person
105 sg:pub.10.1007/978-1-4612-4722-7_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029180033
106 https://doi.org/10.1007/978-1-4612-4722-7_6
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/978-1-4614-7488-3_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029882692
109 https://doi.org/10.1007/978-1-4614-7488-3_9
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/978-3-642-51445-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109709995
112 https://doi.org/10.1007/978-3-642-51445-6
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/978-94-011-0141-7_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010144049
115 https://doi.org/10.1007/978-94-011-0141-7_8
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/bf01243900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041575179
118 https://doi.org/10.1007/bf01243900
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/bf01388860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034702929
121 https://doi.org/10.1007/bf01388860
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/bf01900681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016142923
124 https://doi.org/10.1007/bf01900681
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/bf02698841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031421448
127 https://doi.org/10.1007/bf02698841
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/bf02940759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011567416
130 https://doi.org/10.1007/bf02940759
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/bfb0058988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032392548
133 https://doi.org/10.1007/bfb0058988
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/bfb0062491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001309388
136 https://doi.org/10.1007/bfb0062491
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s00222-002-0253-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003734370
139 https://doi.org/10.1007/s00222-002-0253-8
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s00222-007-0077-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044089348
142 https://doi.org/10.1007/s00222-007-0077-7
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s00222-009-0177-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021515131
145 https://doi.org/10.1007/s00222-009-0177-7
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s11856-014-1110-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045246490
148 https://doi.org/10.1007/s11856-014-1110-3
149 rdf:type schema:CreativeWork
150 https://app.dimensions.ai/details/publication/pub.1039164941 schema:CreativeWork
151 https://doi.org/10.1016/0022-314x(83)90051-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034489163
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1017/cbo9780511755170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098666941
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1017/s0143385700003382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053860587
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1017/s0305004100068481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054037967
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1017/s0305004107000710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053870495
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1090/conm/587/11673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089186319
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1090/pspum/008/0182610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089195944
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1090/s0002-9947-1980-0574794-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037125545
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1090/s0894-0347-02-00410-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044061209
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1112/s0024611502013898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043060328
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1112/s0025579300001054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062055247
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1215/s0012-7094-02-11314-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064415274
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1215/s0012-7094-93-07107-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064419872
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1515/crelle.2011.128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024907203
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1515/crll.1998.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034995848
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1515/form.2011.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043023338
182 rdf:type schema:CreativeWork
183 https://doi.org/10.2307/120997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069397470
184 rdf:type schema:CreativeWork
185 https://doi.org/10.2307/2372837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069899448
186 rdf:type schema:CreativeWork
187 https://doi.org/10.2307/2373052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069899637
188 rdf:type schema:CreativeWork
189 https://doi.org/10.3792/pja/1195523378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071428967
190 rdf:type schema:CreativeWork
191 https://doi.org/10.4007/annals.2011.174.1.18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071867348
192 rdf:type schema:CreativeWork
193 https://doi.org/10.4171/jems/520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072318137
194 rdf:type schema:CreativeWork
195 https://doi.org/10.4310/jdg/1214441370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459607
196 rdf:type schema:CreativeWork
197 https://www.grid.ac/institutes/grid.268117.b schema:alternateName Wesleyan University
198 schema:name Department of Mathematics and Computer Science, Wesleyan University, 265 Church Street, 06459, Middletown, CT, USA
199 rdf:type schema:Organization
200 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
201 schema:name Department of Mathematics, Yale University, 442 Dunham Lab, 10 Hillhouse Avenue, 06511, New Haven, CT, USA
202 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...