Rates and Effects of Local Minima on Fractional-Order Circuit Model Parameters Extracted from Supercapacitor Discharging Using Least Squares Optimization View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-10-22

AUTHORS

Todd J. Freeborn, Ahmed S. Elwakil

ABSTRACT

Optimization routines are widely used to numerically determine a set of model parameters that best fit collected experimental data. One recent application of these methods is to extract the fractional-order circuit model parameters that accurately characterize the transient behavior of discharging supercapacitors. However, the variability that these methods introduce to the extracted model parameters must be understood to determine if changes in model parameters are artifacts of the optimization routine or are representative of physical changes in the device under study. In this work, the variability of supercapacitor fractional-order model parameters is quantified when extracted using a nonlinear least squares optimization applied to simulated data (with 0.1–3% noise) and experimental data of their discharging behavior. These results indicate that the local minima problem occurs at a rate of <1% for this application, though this problem can be overcome using at least 10 independent executions of the solver to each dataset. The variability of the model parameters using 1000 executions of the solver with 1 and 10 iterates is quantified for both simulated and experimental data, with the 10 iterates showing at least an order of magnitude reduction in the range of returned parameters. More... »

PAGES

1-16

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00034-018-0968-4

DOI

http://dx.doi.org/10.1007/s00034-018-0968-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107767635


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Alabama, Tuscaloosa", 
          "id": "https://www.grid.ac/institutes/grid.411015.0", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Alabama, Tuscaloosa, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Freeborn", 
        "givenName": "Todd J.", 
        "id": "sg:person.015753510507.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015753510507.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nile University", 
          "id": "https://www.grid.ac/institutes/grid.440877.8", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Sharjah, Sharjah, UAE", 
            "Department of Electrical and Computer Engineering, University of Calgary, Calgary, Canada", 
            "Nanoelectronics Integrated Systems Center (NISC), Nile University, Cairo, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elwakil", 
        "givenName": "Ahmed S.", 
        "id": "sg:person.013033721707.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033721707.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.epsr.2014.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000395559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep38568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001342930", 
          "https://doi.org/10.1038/srep38568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2016.05.104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012798352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/celc.201600249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014131451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2013/807034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028400015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2016.01.066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031659263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00034-016-0254-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041742588", 
          "https://doi.org/10.1007/s00034-016-0254-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2014.11.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043865674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-7753(00)00485-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047344391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/el.2016.1740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056757785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-est.2015.0011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056826463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-rpg.2015.0093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056835477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jetcas.2013.2271433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061280464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mcas.2010.938637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061389743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsi.2008.918196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061566366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsi.2009.2015690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061566578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsi.2012.2209733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061567447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsi.2015.2469031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061568319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsi.2015.2482340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061568348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsi.2016.2568262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061568480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsii.2011.2172712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061570532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tie.2012.2233693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061625936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tie.2014.2327554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061626693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpel.2011.2151206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061757706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpel.2013.2238683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061758610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tste.2013.2288804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061806637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/544125a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084537464", 
          "https://doi.org/10.1038/544125a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iscas.2017.8050647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093291703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ecctd.2017.8093337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095846908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s11671-017-2396-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099919924", 
          "https://doi.org/10.1186/s11671-017-2396-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2018.08.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106324189"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10-22", 
    "datePublishedReg": "2018-10-22", 
    "description": "Optimization routines are widely used to numerically determine a set of model parameters that best fit collected experimental data. One recent application of these methods is to extract the fractional-order circuit model parameters that accurately characterize the transient behavior of discharging supercapacitors. However, the variability that these methods introduce to the extracted model parameters must be understood to determine if changes in model parameters are artifacts of the optimization routine or are representative of physical changes in the device under study. In this work, the variability of supercapacitor fractional-order model parameters is quantified when extracted using a nonlinear least squares optimization applied to simulated data (with 0.1\u20133% noise) and experimental data of their discharging behavior. These results indicate that the local minima problem occurs at a rate of <1% for this application, though this problem can be overcome using at least 10 independent executions of the solver to each dataset. The variability of the model parameters using 1000 executions of the solver with 1 and 10 iterates is quantified for both simulated and experimental data, with the 10 iterates showing at least an order of magnitude reduction in the range of returned parameters.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00034-018-0968-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136068", 
        "issn": [
          "0278-081X", 
          "1531-5878"
        ], 
        "name": "Circuits, Systems, and Signal Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "name": "Rates and Effects of Local Minima on Fractional-Order Circuit Model Parameters Extracted from Supercapacitor Discharging Using Least Squares Optimization", 
    "pagination": "1-16", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107767635"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00034-018-0968-4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "56b72f836fdd9043fe012cdf3756926679d0d36c31c65694f0f14019f9866114"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00034-018-0968-4", 
      "https://app.dimensions.ai/details/publication/pub.1107767635"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-16T06:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000377_0000000377/records_106810_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00034-018-0968-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00034-018-0968-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00034-018-0968-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00034-018-0968-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00034-018-0968-4'


 

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      21 PREDICATES      57 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00034-018-0968-4 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N626803fe441e4a8190a59e99c0b20a80
4 schema:citation sg:pub.10.1007/s00034-016-0254-2
5 sg:pub.10.1038/544125a
6 sg:pub.10.1038/srep38568
7 sg:pub.10.1186/s11671-017-2396-y
8 https://doi.org/10.1002/celc.201600249
9 https://doi.org/10.1016/j.energy.2016.05.104
10 https://doi.org/10.1016/j.epsr.2014.08.001
11 https://doi.org/10.1016/j.jpowsour.2014.11.022
12 https://doi.org/10.1016/j.jpowsour.2016.01.066
13 https://doi.org/10.1016/j.jpowsour.2018.08.047
14 https://doi.org/10.1016/s0378-7753(00)00485-7
15 https://doi.org/10.1049/el.2016.1740
16 https://doi.org/10.1049/iet-est.2015.0011
17 https://doi.org/10.1049/iet-rpg.2015.0093
18 https://doi.org/10.1109/ecctd.2017.8093337
19 https://doi.org/10.1109/iscas.2017.8050647
20 https://doi.org/10.1109/jetcas.2013.2271433
21 https://doi.org/10.1109/mcas.2010.938637
22 https://doi.org/10.1109/tcsi.2008.918196
23 https://doi.org/10.1109/tcsi.2009.2015690
24 https://doi.org/10.1109/tcsi.2012.2209733
25 https://doi.org/10.1109/tcsi.2015.2469031
26 https://doi.org/10.1109/tcsi.2015.2482340
27 https://doi.org/10.1109/tcsi.2016.2568262
28 https://doi.org/10.1109/tcsii.2011.2172712
29 https://doi.org/10.1109/tie.2012.2233693
30 https://doi.org/10.1109/tie.2014.2327554
31 https://doi.org/10.1109/tpel.2011.2151206
32 https://doi.org/10.1109/tpel.2013.2238683
33 https://doi.org/10.1109/tste.2013.2288804
34 https://doi.org/10.1155/2013/807034
35 schema:datePublished 2018-10-22
36 schema:datePublishedReg 2018-10-22
37 schema:description Optimization routines are widely used to numerically determine a set of model parameters that best fit collected experimental data. One recent application of these methods is to extract the fractional-order circuit model parameters that accurately characterize the transient behavior of discharging supercapacitors. However, the variability that these methods introduce to the extracted model parameters must be understood to determine if changes in model parameters are artifacts of the optimization routine or are representative of physical changes in the device under study. In this work, the variability of supercapacitor fractional-order model parameters is quantified when extracted using a nonlinear least squares optimization applied to simulated data (with 0.1–3% noise) and experimental data of their discharging behavior. These results indicate that the local minima problem occurs at a rate of <1% for this application, though this problem can be overcome using at least 10 independent executions of the solver to each dataset. The variability of the model parameters using 1000 executions of the solver with 1 and 10 iterates is quantified for both simulated and experimental data, with the 10 iterates showing at least an order of magnitude reduction in the range of returned parameters.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N316e4d28a3e04d93b9981c1f525e892c
42 Ne024c43c36a14f90bf21f0f3917f6e0c
43 sg:journal.1136068
44 schema:name Rates and Effects of Local Minima on Fractional-Order Circuit Model Parameters Extracted from Supercapacitor Discharging Using Least Squares Optimization
45 schema:pagination 1-16
46 schema:productId N2888b5f27213433fbbc3063ee55e2ea9
47 N7144bfe7e15447aa98d86a081905a17d
48 N8c25ba8d00c14dbb8fffce5a0780dfc4
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107767635
50 https://doi.org/10.1007/s00034-018-0968-4
51 schema:sdDatePublished 2019-04-16T06:22
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N3f6418377f864ff7a00ba0b5f055a01e
54 schema:url https://link.springer.com/10.1007%2Fs00034-018-0968-4
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N2888b5f27213433fbbc3063ee55e2ea9 schema:name readcube_id
59 schema:value 56b72f836fdd9043fe012cdf3756926679d0d36c31c65694f0f14019f9866114
60 rdf:type schema:PropertyValue
61 N316e4d28a3e04d93b9981c1f525e892c schema:issueNumber 5
62 rdf:type schema:PublicationIssue
63 N3f6418377f864ff7a00ba0b5f055a01e schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N626803fe441e4a8190a59e99c0b20a80 rdf:first sg:person.015753510507.70
66 rdf:rest Nc2a971fa730a442f9bda2975ebbfa40e
67 N7144bfe7e15447aa98d86a081905a17d schema:name doi
68 schema:value 10.1007/s00034-018-0968-4
69 rdf:type schema:PropertyValue
70 N8c25ba8d00c14dbb8fffce5a0780dfc4 schema:name dimensions_id
71 schema:value pub.1107767635
72 rdf:type schema:PropertyValue
73 Nc2a971fa730a442f9bda2975ebbfa40e rdf:first sg:person.013033721707.26
74 rdf:rest rdf:nil
75 Ne024c43c36a14f90bf21f0f3917f6e0c schema:volumeNumber 38
76 rdf:type schema:PublicationVolume
77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
78 schema:name Mathematical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
81 schema:name Numerical and Computational Mathematics
82 rdf:type schema:DefinedTerm
83 sg:journal.1136068 schema:issn 0278-081X
84 1531-5878
85 schema:name Circuits, Systems, and Signal Processing
86 rdf:type schema:Periodical
87 sg:person.013033721707.26 schema:affiliation https://www.grid.ac/institutes/grid.440877.8
88 schema:familyName Elwakil
89 schema:givenName Ahmed S.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033721707.26
91 rdf:type schema:Person
92 sg:person.015753510507.70 schema:affiliation https://www.grid.ac/institutes/grid.411015.0
93 schema:familyName Freeborn
94 schema:givenName Todd J.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015753510507.70
96 rdf:type schema:Person
97 sg:pub.10.1007/s00034-016-0254-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041742588
98 https://doi.org/10.1007/s00034-016-0254-2
99 rdf:type schema:CreativeWork
100 sg:pub.10.1038/544125a schema:sameAs https://app.dimensions.ai/details/publication/pub.1084537464
101 https://doi.org/10.1038/544125a
102 rdf:type schema:CreativeWork
103 sg:pub.10.1038/srep38568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001342930
104 https://doi.org/10.1038/srep38568
105 rdf:type schema:CreativeWork
106 sg:pub.10.1186/s11671-017-2396-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1099919924
107 https://doi.org/10.1186/s11671-017-2396-y
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1002/celc.201600249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014131451
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.energy.2016.05.104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012798352
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.epsr.2014.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000395559
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.jpowsour.2014.11.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043865674
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.jpowsour.2016.01.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031659263
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.jpowsour.2018.08.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106324189
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/s0378-7753(00)00485-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047344391
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1049/el.2016.1740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056757785
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1049/iet-est.2015.0011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056826463
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1049/iet-rpg.2015.0093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056835477
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/ecctd.2017.8093337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095846908
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/iscas.2017.8050647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093291703
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/jetcas.2013.2271433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061280464
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/mcas.2010.938637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061389743
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/tcsi.2008.918196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061566366
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/tcsi.2009.2015690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061566578
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/tcsi.2012.2209733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061567447
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/tcsi.2015.2469031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061568319
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/tcsi.2015.2482340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061568348
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/tcsi.2016.2568262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061568480
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/tcsii.2011.2172712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061570532
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/tie.2012.2233693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061625936
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/tie.2014.2327554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061626693
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/tpel.2011.2151206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061757706
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/tpel.2013.2238683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061758610
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/tste.2013.2288804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061806637
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1155/2013/807034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028400015
162 rdf:type schema:CreativeWork
163 https://www.grid.ac/institutes/grid.411015.0 schema:alternateName University of Alabama, Tuscaloosa
164 schema:name Department of Electrical and Computer Engineering, University of Alabama, Tuscaloosa, USA
165 rdf:type schema:Organization
166 https://www.grid.ac/institutes/grid.440877.8 schema:alternateName Nile University
167 schema:name Department of Electrical and Computer Engineering, University of Calgary, Calgary, Canada
168 Department of Electrical and Computer Engineering, University of Sharjah, Sharjah, UAE
169 Nanoelectronics Integrated Systems Center (NISC), Nile University, Cairo, Egypt
170 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...