Off-Grid Direction-of-Arrival Estimation Based on Steering Vector Approximation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-08-09

AUTHORS

Ben Wang, Yujie Gu, Wei Wang

ABSTRACT

In this paper, a novel off-grid direction-of-arrival (DOA) estimation algorithm is proposed based on steering vector approximation. The conventional multiple signal classification (MUSIC) technique estimates the DOA with a uniformly discretized grid by assuming that the true DOAs lie on the grids. In practice, this assumption is rarely satisfied. In order to improve the estimation accuracy, a dense sampling grid is required for the MUSIC technique. Besides the higher computational complexity, it is still not guaranteed that the dense sampling grids will cover the true DOAs. In order to address the off-grid problem with a lower computational complexity, we use the Taylor series expansion to approximate the steering vectors. We first construct a two-dimensional spectrum searching method to simultaneously estimate the nearest on-grid DOA and the corresponding off-grid error. To further improve the estimation accuracy, we then solve an optimization problem to obtain the accurate DOA estimation, which is formulated by the fact that the signal and noise subspaces are orthogonal to each other. Simulation results demonstrate the effectiveness of the proposed off-grid DOA estimation algorithm. More... »

PAGES

1-14

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00034-018-0914-5

DOI

http://dx.doi.org/10.1007/s00034-018-0914-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106084412


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harbin Engineering University", 
          "id": "https://www.grid.ac/institutes/grid.33764.35", 
          "name": [
            "College of Automation, Harbin Engineering University, 150001, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Ben", 
        "id": "sg:person.015727525765.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015727525765.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Temple University", 
          "id": "https://www.grid.ac/institutes/grid.264727.2", 
          "name": [
            "Department of Electrical and Computer Engineering, Temple University, 19122, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gu", 
        "givenName": "Yujie", 
        "id": "sg:person.07713420245.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07713420245.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Engineering University", 
          "id": "https://www.grid.ac/institutes/grid.33764.35", 
          "name": [
            "College of Automation, Harbin Engineering University, 150001, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Wei", 
        "id": "sg:person.01027104347.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027104347.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1109/tit.2006.871582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007222025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2013.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024705646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.857787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061101393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/29.45540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061144511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/29.60109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061144727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/29.7543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061144755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/7.259520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061214474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lsp.2014.2314175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061378711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/proc.1969.7278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061440655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/taes.2014.130018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061486365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tap.1986.1143830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061494104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tassp.1986.1164935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061519957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2002.806865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061798789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2004.838966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061799407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2005.850882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061799644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2011.2112650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061802588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2011.2144591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061802699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2012.2194289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061803281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2012.2222378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061803543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2013.2273198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061803956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177704250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064400423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-com.2016.1048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085286912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2017.2706187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085539334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lsp.2017.2708659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085663937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsen.2017.2709329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085795735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2017.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090382744"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08-09", 
    "datePublishedReg": "2018-08-09", 
    "description": "In this paper, a novel off-grid direction-of-arrival (DOA) estimation algorithm is proposed based on steering vector approximation. The conventional multiple signal classification (MUSIC) technique estimates the DOA with a uniformly discretized grid by assuming that the true DOAs lie on the grids. In practice, this assumption is rarely satisfied. In order to improve the estimation accuracy, a dense sampling grid is required for the MUSIC technique. Besides the higher computational complexity, it is still not guaranteed that the dense sampling grids will cover the true DOAs. In order to address the off-grid problem with a lower computational complexity, we use the Taylor series expansion to approximate the steering vectors. We first construct a two-dimensional spectrum searching method to simultaneously estimate the nearest on-grid DOA and the corresponding off-grid error. To further improve the estimation accuracy, we then solve an optimization problem to obtain the accurate DOA estimation, which is formulated by the fact that the signal and noise subspaces are orthogonal to each other. Simulation results demonstrate the effectiveness of the proposed off-grid DOA estimation algorithm.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00034-018-0914-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136068", 
        "issn": [
          "0278-081X", 
          "1531-5878"
        ], 
        "name": "Circuits, Systems, and Signal Processing", 
        "type": "Periodical"
      }
    ], 
    "name": "Off-Grid Direction-of-Arrival Estimation Based on Steering Vector Approximation", 
    "pagination": "1-14", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9fb85b20110a70439bb75a2f96bfa5a6def374f32dc1e8e444f6e76907c24c34"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00034-018-0914-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106084412"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00034-018-0914-5", 
      "https://app.dimensions.ai/details/publication/pub.1106084412"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000494.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00034-018-0914-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00034-018-0914-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00034-018-0914-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00034-018-0914-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00034-018-0914-5'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      21 PREDICATES      50 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00034-018-0914-5 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nf700c1c160254d1da827f6875c299956
4 schema:citation https://doi.org/10.1016/j.sigpro.2013.10.009
5 https://doi.org/10.1016/j.sigpro.2017.07.004
6 https://doi.org/10.1049/iet-com.2016.1048
7 https://doi.org/10.1109/18.857787
8 https://doi.org/10.1109/29.45540
9 https://doi.org/10.1109/29.60109
10 https://doi.org/10.1109/29.7543
11 https://doi.org/10.1109/7.259520
12 https://doi.org/10.1109/jsen.2017.2709329
13 https://doi.org/10.1109/lsp.2014.2314175
14 https://doi.org/10.1109/lsp.2017.2708659
15 https://doi.org/10.1109/proc.1969.7278
16 https://doi.org/10.1109/taes.2014.130018
17 https://doi.org/10.1109/tap.1986.1143830
18 https://doi.org/10.1109/tassp.1986.1164935
19 https://doi.org/10.1109/tit.2006.871582
20 https://doi.org/10.1109/tsp.2002.806865
21 https://doi.org/10.1109/tsp.2004.838966
22 https://doi.org/10.1109/tsp.2005.850882
23 https://doi.org/10.1109/tsp.2011.2112650
24 https://doi.org/10.1109/tsp.2011.2144591
25 https://doi.org/10.1109/tsp.2012.2194289
26 https://doi.org/10.1109/tsp.2012.2222378
27 https://doi.org/10.1109/tsp.2013.2273198
28 https://doi.org/10.1109/tsp.2017.2706187
29 https://doi.org/10.1214/aoms/1177704250
30 schema:datePublished 2018-08-09
31 schema:datePublishedReg 2018-08-09
32 schema:description In this paper, a novel off-grid direction-of-arrival (DOA) estimation algorithm is proposed based on steering vector approximation. The conventional multiple signal classification (MUSIC) technique estimates the DOA with a uniformly discretized grid by assuming that the true DOAs lie on the grids. In practice, this assumption is rarely satisfied. In order to improve the estimation accuracy, a dense sampling grid is required for the MUSIC technique. Besides the higher computational complexity, it is still not guaranteed that the dense sampling grids will cover the true DOAs. In order to address the off-grid problem with a lower computational complexity, we use the Taylor series expansion to approximate the steering vectors. We first construct a two-dimensional spectrum searching method to simultaneously estimate the nearest on-grid DOA and the corresponding off-grid error. To further improve the estimation accuracy, we then solve an optimization problem to obtain the accurate DOA estimation, which is formulated by the fact that the signal and noise subspaces are orthogonal to each other. Simulation results demonstrate the effectiveness of the proposed off-grid DOA estimation algorithm.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf sg:journal.1136068
37 schema:name Off-Grid Direction-of-Arrival Estimation Based on Steering Vector Approximation
38 schema:pagination 1-14
39 schema:productId N5faa6569d4ad4683a92f0f4c2f5aa08d
40 N8329564505aa4cbc981e8e18e31d6672
41 Nfb758bf4691546289d7eb524eed4fdbe
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106084412
43 https://doi.org/10.1007/s00034-018-0914-5
44 schema:sdDatePublished 2019-04-10T19:53
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher Nf3d4dcf8fc49412d9b6da5796091af7c
47 schema:url http://link.springer.com/10.1007/s00034-018-0914-5
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N5faa6569d4ad4683a92f0f4c2f5aa08d schema:name dimensions_id
52 schema:value pub.1106084412
53 rdf:type schema:PropertyValue
54 N8329564505aa4cbc981e8e18e31d6672 schema:name doi
55 schema:value 10.1007/s00034-018-0914-5
56 rdf:type schema:PropertyValue
57 Na53fcd53fce84f9180027f418cf2a2e3 rdf:first sg:person.07713420245.06
58 rdf:rest Nfebc8b6987ab488eac1bd6dcbed5192c
59 Nf3d4dcf8fc49412d9b6da5796091af7c schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 Nf700c1c160254d1da827f6875c299956 rdf:first sg:person.015727525765.45
62 rdf:rest Na53fcd53fce84f9180027f418cf2a2e3
63 Nfb758bf4691546289d7eb524eed4fdbe schema:name readcube_id
64 schema:value 9fb85b20110a70439bb75a2f96bfa5a6def374f32dc1e8e444f6e76907c24c34
65 rdf:type schema:PropertyValue
66 Nfebc8b6987ab488eac1bd6dcbed5192c rdf:first sg:person.01027104347.38
67 rdf:rest rdf:nil
68 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
69 schema:name Information and Computing Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
72 schema:name Artificial Intelligence and Image Processing
73 rdf:type schema:DefinedTerm
74 sg:journal.1136068 schema:issn 0278-081X
75 1531-5878
76 schema:name Circuits, Systems, and Signal Processing
77 rdf:type schema:Periodical
78 sg:person.01027104347.38 schema:affiliation https://www.grid.ac/institutes/grid.33764.35
79 schema:familyName Wang
80 schema:givenName Wei
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027104347.38
82 rdf:type schema:Person
83 sg:person.015727525765.45 schema:affiliation https://www.grid.ac/institutes/grid.33764.35
84 schema:familyName Wang
85 schema:givenName Ben
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015727525765.45
87 rdf:type schema:Person
88 sg:person.07713420245.06 schema:affiliation https://www.grid.ac/institutes/grid.264727.2
89 schema:familyName Gu
90 schema:givenName Yujie
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07713420245.06
92 rdf:type schema:Person
93 https://doi.org/10.1016/j.sigpro.2013.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024705646
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.sigpro.2017.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090382744
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1049/iet-com.2016.1048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085286912
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1109/18.857787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061101393
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1109/29.45540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061144511
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1109/29.60109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061144727
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/29.7543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061144755
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/7.259520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061214474
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/jsen.2017.2709329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085795735
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1109/lsp.2014.2314175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061378711
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1109/lsp.2017.2708659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085663937
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/proc.1969.7278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061440655
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1109/taes.2014.130018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061486365
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/tap.1986.1143830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061494104
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/tassp.1986.1164935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061519957
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/tit.2006.871582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007222025
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/tsp.2002.806865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061798789
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/tsp.2004.838966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061799407
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/tsp.2005.850882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061799644
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/tsp.2011.2112650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061802588
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/tsp.2011.2144591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061802699
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/tsp.2012.2194289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061803281
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/tsp.2012.2222378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061803543
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/tsp.2013.2273198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061803956
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/tsp.2017.2706187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085539334
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1214/aoms/1177704250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064400423
144 rdf:type schema:CreativeWork
145 https://www.grid.ac/institutes/grid.264727.2 schema:alternateName Temple University
146 schema:name Department of Electrical and Computer Engineering, Temple University, 19122, Philadelphia, PA, USA
147 rdf:type schema:Organization
148 https://www.grid.ac/institutes/grid.33764.35 schema:alternateName Harbin Engineering University
149 schema:name College of Automation, Harbin Engineering University, 150001, Harbin, China
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...