Ontology type: schema:ScholarlyArticle
2017-08
AUTHORSYanjun Shu, Xin-Ge Liu, Yajuan Liu, Ju H. Park
ABSTRACTThis paper is concerned with the guaranteed generalized H2 performance state estimation for a class of static neural networks with a time-varying delay. A more general Arcak-type state estimator rather than the Luenberger-type state estimator is adopted to deal with this problem. Based on the Lyapunov stability theory, the inequality techniques and the delay-partitioning approach, some novel delay-dependent design criteria in terms of linear matrix inequalities (LMIs) are proposed ensuring that the resulting error system is globally asymptotically stable and a prescribed generalized H2 performance is guaranteed. The estimator gain matrices can be derived by solving the LMIs. Compared with the existing results, the sufficient conditions presented in this paper are with less conservatism. Numerical examples are given to illustrate the effectiveness and superiority of the developed method over the existing approaches. A comparison between the Arcak-type state estimator and Luenberger-type state estimator is given simultaneously. More... »
PAGES3114-3142
http://scigraph.springernature.com/pub.10.1007/s00034-016-0463-8
DOIhttp://dx.doi.org/10.1007/s00034-016-0463-8
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1021465685
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Communications Technologies",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Technology",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Central South University",
"id": "https://www.grid.ac/institutes/grid.216417.7",
"name": [
"School of Mathematics and Statistics, Central South University, 410083, Changsha, China"
],
"type": "Organization"
},
"familyName": "Shu",
"givenName": "Yanjun",
"id": "sg:person.011264343651.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011264343651.18"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Central South University",
"id": "https://www.grid.ac/institutes/grid.216417.7",
"name": [
"School of Mathematics and Statistics, Central South University, 410083, Changsha, China"
],
"type": "Organization"
},
"familyName": "Liu",
"givenName": "Xin-Ge",
"id": "sg:person.014274313762.73",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014274313762.73"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Yeungnam University",
"id": "https://www.grid.ac/institutes/grid.413028.c",
"name": [
"Department of Electrical Engineering, Yeungnam University, 280 Daehak-Ro, 38541, Kyongsan, Republic of Korea"
],
"type": "Organization"
},
"familyName": "Liu",
"givenName": "Yajuan",
"id": "sg:person.010272216655.66",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010272216655.66"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Yeungnam University",
"id": "https://www.grid.ac/institutes/grid.413028.c",
"name": [
"Department of Electrical Engineering, Yeungnam University, 280 Daehak-Ro, 38541, Kyongsan, Republic of Korea"
],
"type": "Organization"
},
"familyName": "Park",
"givenName": "Ju H.",
"id": "sg:person.07705373347.23",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07705373347.23"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s11071-011-0286-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001341964",
"https://doi.org/10.1007/s11071-011-0286-x"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/rnc.3243",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002041154"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.automatica.2015.07.017",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004457959"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.automatica.2014.11.019",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005289779"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jfranklin.2015.01.004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005520448"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.isatra.2015.10.001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006695089"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00521-013-1531-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010997856",
"https://doi.org/10.1007/s00521-013-1531-7"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.neunet.2016.02.002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011275095"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.neucom.2012.05.021",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012602699"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jfranklin.2015.08.024",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014153641"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.neucom.2014.10.023",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016155059"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.neunet.2014.02.012",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019063714"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.neucom.2013.09.020",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020370107"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.neucom.2010.09.020",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021448796"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0005-1098(01)00160-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028280850"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0893-6080(03)00192-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031729841"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0893-6080(03)00192-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031729841"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.neucom.2015.07.038",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031962113"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.isatra.2015.09.008",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032293858"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.automatica.2010.10.014",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032303085"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.sysconle.2016.03.002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034550018"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.automatica.2015.07.022",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034818693"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00034-014-9814-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036618263",
"https://doi.org/10.1007/s00034-014-9814-5"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.neucom.2014.12.062",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043299600"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.neucom.2010.09.017",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043525195"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.automatica.2013.05.030",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044667730"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.sysconle.2013.07.003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046234708"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1073/pnas.81.10.3088",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049596495"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00521-012-1061-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050937880",
"https://doi.org/10.1007/s00521-012-1061-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11071-011-0010-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051594974",
"https://doi.org/10.1007/s11071-011-0010-x"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.amc.2013.10.075",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052591459"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1049/iet-cta.2013.0400",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1056823772"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1049/iet-cta.2014.0962",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1056824171"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/72.329700",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061218518"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tac.2013.2289706",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061478928"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tac.2015.2404271",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061479459"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tac.2015.2503047",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061479847"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tcsi.2008.2003372",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061566134"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tcsii.2012.2234930",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061570751"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tcsii.2013.2258258",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061570810"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tcst.2010.2042296",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061572902"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tfuzz.2012.2187299",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061606563"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tnn.2004.841813",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061716829"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tnn.2007.908633",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061717299"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tnn.2007.912319",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061717337"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tnn.2009.2034742",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061717630"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tnn.2010.2054107",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061717750"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tnn.2011.2128341",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061717874"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tnn.2011.2131679",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061717880"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tnn.2011.2147331",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061717895"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tnnls.2013.2251000",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061718281"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tnnls.2014.2317880",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061718578"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tnnls.2014.2334511",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061718623"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tnnls.2014.2387434",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061718753"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tnnls.2014.2387885",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061718757"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tnnls.2015.2449898",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061718902"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tsp.2010.2103068",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061802534"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1142/s0217984909017807",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062944271"
],
"type": "CreativeWork"
}
],
"datePublished": "2017-08",
"datePublishedReg": "2017-08-01",
"description": "This paper is concerned with the guaranteed generalized H2 performance state estimation for a class of static neural networks with a time-varying delay. A more general Arcak-type state estimator rather than the Luenberger-type state estimator is adopted to deal with this problem. Based on the Lyapunov stability theory, the inequality techniques and the delay-partitioning approach, some novel delay-dependent design criteria in terms of linear matrix inequalities (LMIs) are proposed ensuring that the resulting error system is globally asymptotically stable and a prescribed generalized H2 performance is guaranteed. The estimator gain matrices can be derived by solving the LMIs. Compared with the existing results, the sufficient conditions presented in this paper are with less conservatism. Numerical examples are given to illustrate the effectiveness and superiority of the developed method over the existing approaches. A comparison between the Arcak-type state estimator and Luenberger-type state estimator is given simultaneously.",
"genre": "research_article",
"id": "sg:pub.10.1007/s00034-016-0463-8",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.7175555",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1136068",
"issn": [
"0278-081X",
"1531-5878"
],
"name": "Circuits, Systems, and Signal Processing",
"type": "Periodical"
},
{
"issueNumber": "8",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "36"
}
],
"name": "Improved Results on Guaranteed Generalized H2 Performance State Estimation for Delayed Static Neural Networks",
"pagination": "3114-3142",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"6645cce38658c9ae825fc6e9eed246b64640a282954c2aa4e5b3b42ee4dc87c0"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00034-016-0463-8"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1021465685"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00034-016-0463-8",
"https://app.dimensions.ai/details/publication/pub.1021465685"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T12:22",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87083_00000000.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs00034-016-0463-8"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00034-016-0463-8'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00034-016-0463-8'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00034-016-0463-8'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00034-016-0463-8'
This table displays all metadata directly associated to this object as RDF triples.
263 TRIPLES
21 PREDICATES
84 URIs
19 LITERALS
7 BLANK NODES