Non-fragile Observer-Based H∞ Control for Discrete-Time Systems Using Passivity Theory View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-08

AUTHORS

K. Mathiyalagan, Ju H. Park, H. Y. Jung, R. Sakthivel

ABSTRACT

In this paper, non-fragile observer-based H∞ controller design is investigated for a class of discrete-time systems. The system under consideration is assumed to have random fluctuations in both the state feedback controller gain and observer gain matrices. The random fluctuations are defined using Bernoulli-distributed white sequences with time-varying probability measures. The probability-dependent controller gains are designed to guarantee the stochastic stability of the system with a prescribed mixed H∞ and passivity performance. Lyapunov stability theory, passivity theory and a linear matrix inequality (LMI) approach are used to derive sufficient conditions for the existence of the state feedback controller and observer gains. The probability-dependent gain-scheduled controllers are designed based on a convex optimization problem using a set of LMIs, which can be easily solved with standard numerical packages. Finally, a practical application is presented as an example to illustrate the effectiveness and potential of the method. More... »

PAGES

2499-2516

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00034-015-9984-9

DOI

http://dx.doi.org/10.1007/s00034-015-9984-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000994268


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yeungnam University", 
          "id": "https://www.grid.ac/institutes/grid.413028.c", 
          "name": [
            "Department of Electrical Engineering/Information and Communication Engineering, Yeungnam University, 280 Daehak-Ro, 712-749, Kyongsan, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mathiyalagan", 
        "givenName": "K.", 
        "id": "sg:person.01163407314.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163407314.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yeungnam University", 
          "id": "https://www.grid.ac/institutes/grid.413028.c", 
          "name": [
            "Department of Electrical Engineering/Information and Communication Engineering, Yeungnam University, 280 Daehak-Ro, 712-749, Kyongsan, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Ju H.", 
        "id": "sg:person.07705373347.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07705373347.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yeungnam University", 
          "id": "https://www.grid.ac/institutes/grid.413028.c", 
          "name": [
            "Department of Electrical Engineering/Information and Communication Engineering, Yeungnam University, 280 Daehak-Ro, 712-749, Kyongsan, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jung", 
        "givenName": "H. Y.", 
        "id": "sg:person.015135050055.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015135050055.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sungkyunkwan University", 
          "id": "https://www.grid.ac/institutes/grid.264381.a", 
          "name": [
            "Department of Mathematics, Sungkyunkwan University, 440 746, Suwon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sakthivel", 
        "givenName": "R.", 
        "id": "sg:person.01152244155.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152244155.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ins.2009.07.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001315344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2014.03.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002660368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rnc.2788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003675723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2012.12.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011011698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2011.06.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013766938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.isatra.2012.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013797840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2014.10.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018019075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfranklin.2014.01.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022653171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2013.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023114294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2009.05.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031463925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2014.06.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033118102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fss.2011.12.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036664408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00034-011-9328-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037551492", 
          "https://doi.org/10.1007/s00034-011-9328-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00034-013-9588-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040288625", 
          "https://doi.org/10.1007/s00034-013-9588-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207179608921866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043231379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2013.01.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044125159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apm.2012.07.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048473659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00034-010-9203-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049034711", 
          "https://doi.org/10.1007/s00034-010-9203-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00034-010-9203-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049034711", 
          "https://doi.org/10.1007/s00034-010-9203-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207720410001714121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049250965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2014.05.097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050775466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-cta.2010.0484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056823183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-cta.2010.0554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056823200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-cta.2013.0202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056823733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2005.844177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061475875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2011.2166729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061478149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2012.2211456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061478511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcst.2012.2189211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061573265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcyb.2014.2308983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061579646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2012.2226941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061606631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2013.2256913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061606711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tie.2013.2242418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061625985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tie.2013.2248339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061626024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2007.896412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061796753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1470176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062070489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611970777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098556247"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-08", 
    "datePublishedReg": "2015-08-01", 
    "description": "In this paper, non-fragile observer-based H\u221e controller design is investigated for a class of discrete-time systems. The system under consideration is assumed to have random fluctuations in both the state feedback controller gain and observer gain matrices. The random fluctuations are defined using Bernoulli-distributed white sequences with time-varying probability measures. The probability-dependent controller gains are designed to guarantee the stochastic stability of the system with a prescribed mixed H\u221e and passivity performance. Lyapunov stability theory, passivity theory and a linear matrix inequality (LMI) approach are used to derive sufficient conditions for the existence of the state feedback controller and observer gains. The probability-dependent gain-scheduled controllers are designed based on a convex optimization problem using a set of LMIs, which can be easily solved with standard numerical packages. Finally, a practical application is presented as an example to illustrate the effectiveness and potential of the method.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00034-015-9984-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7480920", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136068", 
        "issn": [
          "0278-081X", 
          "1531-5878"
        ], 
        "name": "Circuits, Systems, and Signal Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "34"
      }
    ], 
    "name": "Non-fragile Observer-Based H\u221e Control for Discrete-Time Systems Using Passivity Theory", 
    "pagination": "2499-2516", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "04bcab3860b92823001a21fc33deb7cbf27053f66fade5c1c5897a078e31d3fd"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00034-015-9984-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000994268"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00034-015-9984-9", 
      "https://app.dimensions.ai/details/publication/pub.1000994268"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000479.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00034-015-9984-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00034-015-9984-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00034-015-9984-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00034-015-9984-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00034-015-9984-9'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      21 PREDICATES      62 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00034-015-9984-9 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N13d3db30be5246eba3d116a29cac348d
4 schema:citation sg:pub.10.1007/s00034-010-9203-7
5 sg:pub.10.1007/s00034-011-9328-3
6 sg:pub.10.1007/s00034-013-9588-1
7 https://doi.org/10.1002/rnc.2788
8 https://doi.org/10.1016/j.amc.2012.12.029
9 https://doi.org/10.1016/j.amc.2014.05.097
10 https://doi.org/10.1016/j.apm.2012.07.060
11 https://doi.org/10.1016/j.automatica.2009.05.014
12 https://doi.org/10.1016/j.automatica.2011.06.025
13 https://doi.org/10.1016/j.automatica.2014.10.053
14 https://doi.org/10.1016/j.fss.2011.12.017
15 https://doi.org/10.1016/j.ins.2009.07.016
16 https://doi.org/10.1016/j.ins.2014.03.029
17 https://doi.org/10.1016/j.isatra.2012.10.001
18 https://doi.org/10.1016/j.jfranklin.2014.01.014
19 https://doi.org/10.1016/j.neucom.2014.06.022
20 https://doi.org/10.1016/j.sigpro.2013.01.021
21 https://doi.org/10.1016/j.sigpro.2013.11.006
22 https://doi.org/10.1049/iet-cta.2010.0484
23 https://doi.org/10.1049/iet-cta.2010.0554
24 https://doi.org/10.1049/iet-cta.2013.0202
25 https://doi.org/10.1080/00207179608921866
26 https://doi.org/10.1080/00207720410001714121
27 https://doi.org/10.1109/tac.2005.844177
28 https://doi.org/10.1109/tac.2011.2166729
29 https://doi.org/10.1109/tac.2012.2211456
30 https://doi.org/10.1109/tcst.2012.2189211
31 https://doi.org/10.1109/tcyb.2014.2308983
32 https://doi.org/10.1109/tfuzz.2012.2226941
33 https://doi.org/10.1109/tfuzz.2013.2256913
34 https://doi.org/10.1109/tie.2013.2242418
35 https://doi.org/10.1109/tie.2013.2248339
36 https://doi.org/10.1109/tsmcb.2007.896412
37 https://doi.org/10.1115/1.1470176
38 https://doi.org/10.1137/1.9781611970777
39 schema:datePublished 2015-08
40 schema:datePublishedReg 2015-08-01
41 schema:description In this paper, non-fragile observer-based H∞ controller design is investigated for a class of discrete-time systems. The system under consideration is assumed to have random fluctuations in both the state feedback controller gain and observer gain matrices. The random fluctuations are defined using Bernoulli-distributed white sequences with time-varying probability measures. The probability-dependent controller gains are designed to guarantee the stochastic stability of the system with a prescribed mixed H∞ and passivity performance. Lyapunov stability theory, passivity theory and a linear matrix inequality (LMI) approach are used to derive sufficient conditions for the existence of the state feedback controller and observer gains. The probability-dependent gain-scheduled controllers are designed based on a convex optimization problem using a set of LMIs, which can be easily solved with standard numerical packages. Finally, a practical application is presented as an example to illustrate the effectiveness and potential of the method.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf N0d4fefd0db0246f7a366550097382944
46 N85e238eea85a41e8965063e0451ed55f
47 sg:journal.1136068
48 schema:name Non-fragile Observer-Based H∞ Control for Discrete-Time Systems Using Passivity Theory
49 schema:pagination 2499-2516
50 schema:productId N062175a300d14c7a8828b4636e501c1c
51 N5915487b4bd747fcae03da7917af41f2
52 N76385bab02dc4a89b424c8f903224a16
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000994268
54 https://doi.org/10.1007/s00034-015-9984-9
55 schema:sdDatePublished 2019-04-10T14:00
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N05d5ef5837cf46ab84d6f2eb2c4a1d68
58 schema:url http://link.springer.com/10.1007/s00034-015-9984-9
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N05d5ef5837cf46ab84d6f2eb2c4a1d68 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N062175a300d14c7a8828b4636e501c1c schema:name dimensions_id
65 schema:value pub.1000994268
66 rdf:type schema:PropertyValue
67 N0b059ba893db4b0d82c195f0ec47dc91 rdf:first sg:person.01152244155.83
68 rdf:rest rdf:nil
69 N0d4fefd0db0246f7a366550097382944 schema:volumeNumber 34
70 rdf:type schema:PublicationVolume
71 N13d3db30be5246eba3d116a29cac348d rdf:first sg:person.01163407314.70
72 rdf:rest Ncf681f3e68c54ae0846988d02d220cc2
73 N3c174631cc7b428bb5760bc7a9cf126e rdf:first sg:person.015135050055.77
74 rdf:rest N0b059ba893db4b0d82c195f0ec47dc91
75 N5915487b4bd747fcae03da7917af41f2 schema:name readcube_id
76 schema:value 04bcab3860b92823001a21fc33deb7cbf27053f66fade5c1c5897a078e31d3fd
77 rdf:type schema:PropertyValue
78 N76385bab02dc4a89b424c8f903224a16 schema:name doi
79 schema:value 10.1007/s00034-015-9984-9
80 rdf:type schema:PropertyValue
81 N85e238eea85a41e8965063e0451ed55f schema:issueNumber 8
82 rdf:type schema:PublicationIssue
83 Ncf681f3e68c54ae0846988d02d220cc2 rdf:first sg:person.07705373347.23
84 rdf:rest N3c174631cc7b428bb5760bc7a9cf126e
85 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
86 schema:name Mathematical Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
89 schema:name Statistics
90 rdf:type schema:DefinedTerm
91 sg:grant.7480920 http://pending.schema.org/fundedItem sg:pub.10.1007/s00034-015-9984-9
92 rdf:type schema:MonetaryGrant
93 sg:journal.1136068 schema:issn 0278-081X
94 1531-5878
95 schema:name Circuits, Systems, and Signal Processing
96 rdf:type schema:Periodical
97 sg:person.01152244155.83 schema:affiliation https://www.grid.ac/institutes/grid.264381.a
98 schema:familyName Sakthivel
99 schema:givenName R.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152244155.83
101 rdf:type schema:Person
102 sg:person.01163407314.70 schema:affiliation https://www.grid.ac/institutes/grid.413028.c
103 schema:familyName Mathiyalagan
104 schema:givenName K.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163407314.70
106 rdf:type schema:Person
107 sg:person.015135050055.77 schema:affiliation https://www.grid.ac/institutes/grid.413028.c
108 schema:familyName Jung
109 schema:givenName H. Y.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015135050055.77
111 rdf:type schema:Person
112 sg:person.07705373347.23 schema:affiliation https://www.grid.ac/institutes/grid.413028.c
113 schema:familyName Park
114 schema:givenName Ju H.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07705373347.23
116 rdf:type schema:Person
117 sg:pub.10.1007/s00034-010-9203-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049034711
118 https://doi.org/10.1007/s00034-010-9203-7
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s00034-011-9328-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037551492
121 https://doi.org/10.1007/s00034-011-9328-3
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s00034-013-9588-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040288625
124 https://doi.org/10.1007/s00034-013-9588-1
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1002/rnc.2788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003675723
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.amc.2012.12.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011011698
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.amc.2014.05.097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050775466
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.apm.2012.07.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048473659
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.automatica.2009.05.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031463925
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.automatica.2011.06.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013766938
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.automatica.2014.10.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018019075
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.fss.2011.12.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036664408
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.ins.2009.07.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001315344
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.ins.2014.03.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002660368
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.isatra.2012.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013797840
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.jfranklin.2014.01.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022653171
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.neucom.2014.06.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033118102
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.sigpro.2013.01.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044125159
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.sigpro.2013.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023114294
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1049/iet-cta.2010.0484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056823183
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1049/iet-cta.2010.0554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056823200
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1049/iet-cta.2013.0202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056823733
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1080/00207179608921866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043231379
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1080/00207720410001714121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049250965
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/tac.2005.844177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061475875
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/tac.2011.2166729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061478149
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/tac.2012.2211456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061478511
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/tcst.2012.2189211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061573265
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1109/tcyb.2014.2308983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061579646
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1109/tfuzz.2012.2226941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061606631
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1109/tfuzz.2013.2256913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061606711
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1109/tie.2013.2242418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061625985
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1109/tie.2013.2248339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061626024
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1109/tsmcb.2007.896412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061796753
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1115/1.1470176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062070489
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1137/1.9781611970777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556247
189 rdf:type schema:CreativeWork
190 https://www.grid.ac/institutes/grid.264381.a schema:alternateName Sungkyunkwan University
191 schema:name Department of Mathematics, Sungkyunkwan University, 440 746, Suwon, Republic of Korea
192 rdf:type schema:Organization
193 https://www.grid.ac/institutes/grid.413028.c schema:alternateName Yeungnam University
194 schema:name Department of Electrical Engineering/Information and Communication Engineering, Yeungnam University, 280 Daehak-Ro, 712-749, Kyongsan, Republic of Korea
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...