Performance and Complexity Analysis of Blind FIR Channel Identification Algorithms Based on Deterministic Maximum Likelihood in SIMO Systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-08-14

AUTHORS

Elisabeth de Carvalho, Samir-Mohamad Omar, Dirk T. M. Slock

ABSTRACT

We analyze two algorithms that have been introduced previously for Deterministic Maximum Likelihood (DML) blind estimation of multiple FIR channels. The first one is a modification of the Iterative Quadratic ML (IQML) algorithm. IQML gives biased estimates of the channel and performs poorly at low SNR due to noise induced bias. The IQML cost function can be “denoised” by eliminating the noise contribution: the resulting algorithm, Denoised IQML (DIQML), gives consistent estimates and outperforms IQML. Furthermore, DIQML is asymptotically globally convergent and hence insensitive to the initialization. Its asymptotic performance does not reach the DML performance though. The second strategy, called Pseudo-Quadratic ML (PQML), is naturally denoised. The denoising in PQML is furthermore more efficient than in DIQML: PQML yields the same asymptotic performance as DML, as opposed to DIQML, but requires a consistent initialization. We furthermore compare DIQML and PQML to the strategy of alternating minimization w.r.t. symbols and channel for solving DML (AQML). An asymptotic performance analysis, a complexity evaluation and simulation results are also presented. The proposed DIQML and PQML algorithms can immediately be applied also to other subspace problems such as frequency estimation of sinusoids in noise or direction of arrival estimation with uniform linear arrays. More... »

PAGES

683-709

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00034-012-9474-2

DOI

http://dx.doi.org/10.1007/s00034-012-9474-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031099538


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Aalborg University, Niels Jernes Vej 12, A6-212, 9220, Aalborg, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5117.2", 
          "name": [
            "Aalborg University, Niels Jernes Vej 12, A6-212, 9220, Aalborg, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Carvalho", 
        "givenName": "Elisabeth", 
        "id": "sg:person.014517514362.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014517514362.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mobile Communications Dept., EURECOM, BP 193, 06904, Sophia Antipolis Cdx, France", 
          "id": "http://www.grid.ac/institutes/grid.28848.3e", 
          "name": [
            "Mobile Communications Dept., EURECOM, BP 193, 06904, Sophia Antipolis Cdx, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Omar", 
        "givenName": "Samir-Mohamad", 
        "id": "sg:person.013154746213.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013154746213.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mobile Communications Dept., EURECOM, BP 193, 06904, Sophia Antipolis Cdx, France", 
          "id": "http://www.grid.ac/institutes/grid.28848.3e", 
          "name": [
            "Mobile Communications Dept., EURECOM, BP 193, 06904, Sophia Antipolis Cdx, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Slock", 
        "givenName": "Dirk T. M.", 
        "id": "sg:person.015046645205.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015046645205.37"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2012-08-14", 
    "datePublishedReg": "2012-08-14", 
    "description": "We analyze two algorithms that have been introduced previously for Deterministic Maximum Likelihood (DML) blind estimation of multiple FIR channels. The first one is a modification of the Iterative Quadratic ML (IQML) algorithm. IQML gives biased estimates of the channel and performs poorly at low SNR due to noise induced bias. The IQML cost function can be \u201cdenoised\u201d by eliminating the noise contribution: the resulting algorithm, Denoised IQML (DIQML), gives consistent estimates and outperforms IQML. Furthermore, DIQML is asymptotically globally convergent and hence insensitive to the initialization. Its asymptotic performance does not reach the DML performance though. The second strategy, called Pseudo-Quadratic ML (PQML), is naturally denoised. The denoising in PQML is furthermore more efficient than in DIQML: PQML yields the same asymptotic performance as DML, as opposed to DIQML, but requires a consistent initialization. We furthermore compare DIQML and PQML to the strategy of alternating minimization w.r.t. symbols and channel for solving DML (AQML). An asymptotic performance analysis, a complexity evaluation and simulation results are also presented. The proposed DIQML and PQML algorithms can immediately be applied also to other subspace problems such as frequency estimation of sinusoids in noise or direction of arrival estimation with uniform linear arrays.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00034-012-9474-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136068", 
        "issn": [
          "0278-081X", 
          "1531-5878"
        ], 
        "name": "Circuits, Systems, and Signal Processing", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "keywords": [
      "channel identification algorithm", 
      "multiple FIR channels", 
      "ML algorithms", 
      "deterministic maximum likelihood", 
      "complexity analysis", 
      "complexity evaluation", 
      "asymptotic performance", 
      "blind estimation", 
      "same asymptotic performance", 
      "algorithm", 
      "identification algorithm", 
      "IQML", 
      "asymptotic performance analysis", 
      "performance analysis", 
      "FIR channels", 
      "simulation results", 
      "low SNR", 
      "cost function", 
      "arrival (DOA) estimation", 
      "consistent initialization", 
      "uniform linear array", 
      "initialization", 
      "SIMO systems", 
      "frequency estimation", 
      "first one", 
      "performance", 
      "estimation", 
      "denoising", 
      "DML", 
      "second strategy", 
      "linear array", 
      "channels", 
      "maximum likelihood", 
      "SNR", 
      "noise", 
      "subspace problem", 
      "symbols", 
      "system", 
      "strategies", 
      "consistent estimates", 
      "biased estimates", 
      "one", 
      "evaluation", 
      "array", 
      "analysis", 
      "results", 
      "direction", 
      "estimates", 
      "contribution", 
      "function", 
      "problem", 
      "noise contribution", 
      "modification", 
      "likelihood", 
      "sinusoids", 
      "bias", 
      "mL", 
      "Deterministic Maximum Likelihood (DML) blind estimation", 
      "Maximum Likelihood (DML) blind estimation", 
      "Likelihood (DML) blind estimation", 
      "Iterative Quadratic ML (IQML) algorithm", 
      "Quadratic ML (IQML) algorithm", 
      "IQML cost function", 
      "DIQML", 
      "DML performance", 
      "PQML", 
      "minimization w.", 
      "w.", 
      "PQML algorithms", 
      "Blind FIR Channel Identification Algorithms", 
      "FIR Channel Identification Algorithms"
    ], 
    "name": "Performance and Complexity Analysis of Blind FIR Channel Identification Algorithms Based on Deterministic Maximum Likelihood in SIMO Systems", 
    "pagination": "683-709", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031099538"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00034-012-9474-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00034-012-9474-2", 
      "https://app.dimensions.ai/details/publication/pub.1031099538"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_568.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00034-012-9474-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00034-012-9474-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00034-012-9474-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00034-012-9474-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00034-012-9474-2'


 

This table displays all metadata directly associated to this object as RDF triples.

146 TRIPLES      21 PREDICATES      96 URIs      88 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00034-012-9474-2 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 schema:author N485ec6341b134e9784788be9c55ed740
4 schema:datePublished 2012-08-14
5 schema:datePublishedReg 2012-08-14
6 schema:description We analyze two algorithms that have been introduced previously for Deterministic Maximum Likelihood (DML) blind estimation of multiple FIR channels. The first one is a modification of the Iterative Quadratic ML (IQML) algorithm. IQML gives biased estimates of the channel and performs poorly at low SNR due to noise induced bias. The IQML cost function can be “denoised” by eliminating the noise contribution: the resulting algorithm, Denoised IQML (DIQML), gives consistent estimates and outperforms IQML. Furthermore, DIQML is asymptotically globally convergent and hence insensitive to the initialization. Its asymptotic performance does not reach the DML performance though. The second strategy, called Pseudo-Quadratic ML (PQML), is naturally denoised. The denoising in PQML is furthermore more efficient than in DIQML: PQML yields the same asymptotic performance as DML, as opposed to DIQML, but requires a consistent initialization. We furthermore compare DIQML and PQML to the strategy of alternating minimization w.r.t. symbols and channel for solving DML (AQML). An asymptotic performance analysis, a complexity evaluation and simulation results are also presented. The proposed DIQML and PQML algorithms can immediately be applied also to other subspace problems such as frequency estimation of sinusoids in noise or direction of arrival estimation with uniform linear arrays.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N5b65b7422a894c719cd7c9c6656a49d8
11 Na56820aff2b64b9782fab7314be40754
12 sg:journal.1136068
13 schema:keywords Blind FIR Channel Identification Algorithms
14 DIQML
15 DML
16 DML performance
17 Deterministic Maximum Likelihood (DML) blind estimation
18 FIR Channel Identification Algorithms
19 FIR channels
20 IQML
21 IQML cost function
22 Iterative Quadratic ML (IQML) algorithm
23 Likelihood (DML) blind estimation
24 ML algorithms
25 Maximum Likelihood (DML) blind estimation
26 PQML
27 PQML algorithms
28 Quadratic ML (IQML) algorithm
29 SIMO systems
30 SNR
31 algorithm
32 analysis
33 array
34 arrival (DOA) estimation
35 asymptotic performance
36 asymptotic performance analysis
37 bias
38 biased estimates
39 blind estimation
40 channel identification algorithm
41 channels
42 complexity analysis
43 complexity evaluation
44 consistent estimates
45 consistent initialization
46 contribution
47 cost function
48 denoising
49 deterministic maximum likelihood
50 direction
51 estimates
52 estimation
53 evaluation
54 first one
55 frequency estimation
56 function
57 identification algorithm
58 initialization
59 likelihood
60 linear array
61 low SNR
62 mL
63 maximum likelihood
64 minimization w.
65 modification
66 multiple FIR channels
67 noise
68 noise contribution
69 one
70 performance
71 performance analysis
72 problem
73 results
74 same asymptotic performance
75 second strategy
76 simulation results
77 sinusoids
78 strategies
79 subspace problem
80 symbols
81 system
82 uniform linear array
83 w.
84 schema:name Performance and Complexity Analysis of Blind FIR Channel Identification Algorithms Based on Deterministic Maximum Likelihood in SIMO Systems
85 schema:pagination 683-709
86 schema:productId Na035a6e882c34b7d99d91442d82fe3eb
87 Nda17f8bac547438bade1d2c21b3a5584
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031099538
89 https://doi.org/10.1007/s00034-012-9474-2
90 schema:sdDatePublished 2022-01-01T18:28
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher N32dfb1204973485eab1f5d534dd954d9
93 schema:url https://doi.org/10.1007/s00034-012-9474-2
94 sgo:license sg:explorer/license/
95 sgo:sdDataset articles
96 rdf:type schema:ScholarlyArticle
97 N32dfb1204973485eab1f5d534dd954d9 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N485ec6341b134e9784788be9c55ed740 rdf:first sg:person.014517514362.50
100 rdf:rest N67e6574e947347b8b33c22d7f30794e8
101 N5b65b7422a894c719cd7c9c6656a49d8 schema:issueNumber 2
102 rdf:type schema:PublicationIssue
103 N67e6574e947347b8b33c22d7f30794e8 rdf:first sg:person.013154746213.97
104 rdf:rest Nbe075081b4774d518a7eda71799170dc
105 Na035a6e882c34b7d99d91442d82fe3eb schema:name dimensions_id
106 schema:value pub.1031099538
107 rdf:type schema:PropertyValue
108 Na56820aff2b64b9782fab7314be40754 schema:volumeNumber 32
109 rdf:type schema:PublicationVolume
110 Nbe075081b4774d518a7eda71799170dc rdf:first sg:person.015046645205.37
111 rdf:rest rdf:nil
112 Nda17f8bac547438bade1d2c21b3a5584 schema:name doi
113 schema:value 10.1007/s00034-012-9474-2
114 rdf:type schema:PropertyValue
115 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
116 schema:name Engineering
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
119 schema:name Electrical and Electronic Engineering
120 rdf:type schema:DefinedTerm
121 sg:journal.1136068 schema:issn 0278-081X
122 1531-5878
123 schema:name Circuits, Systems, and Signal Processing
124 schema:publisher Springer Nature
125 rdf:type schema:Periodical
126 sg:person.013154746213.97 schema:affiliation grid-institutes:grid.28848.3e
127 schema:familyName Omar
128 schema:givenName Samir-Mohamad
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013154746213.97
130 rdf:type schema:Person
131 sg:person.014517514362.50 schema:affiliation grid-institutes:grid.5117.2
132 schema:familyName de Carvalho
133 schema:givenName Elisabeth
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014517514362.50
135 rdf:type schema:Person
136 sg:person.015046645205.37 schema:affiliation grid-institutes:grid.28848.3e
137 schema:familyName Slock
138 schema:givenName Dirk T. M.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015046645205.37
140 rdf:type schema:Person
141 grid-institutes:grid.28848.3e schema:alternateName Mobile Communications Dept., EURECOM, BP 193, 06904, Sophia Antipolis Cdx, France
142 schema:name Mobile Communications Dept., EURECOM, BP 193, 06904, Sophia Antipolis Cdx, France
143 rdf:type schema:Organization
144 grid-institutes:grid.5117.2 schema:alternateName Aalborg University, Niels Jernes Vej 12, A6-212, 9220, Aalborg, Denmark
145 schema:name Aalborg University, Niels Jernes Vej 12, A6-212, 9220, Aalborg, Denmark
146 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...