Kinetic schemes and boundary conditions for moment equations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2000-05

AUTHORS

H. Struchtrup

ABSTRACT

A numerical scheme for moment equations of kinetic theory, due to LeTallec & Perlat, is considered for the calculation of stationary heat transfer in the Grad 13 moment system and linearized extended thermodynamics of 14 moments. It is shown that the required distance of grid points must be considerably smaller than the mean free path. Thus, the kinetic scheme is useful only in the case of large Knudsen numbers. Results of the numerical calculation for 13 and 14 moments are compared with an analytical solution for heat transfer with 13 moments. The results indicate that the boundary conditions do not guarantee conservation of energy at the walls. In order to overcome this deficiency a modification of the boundary conditions is presented and discussed. More... »

PAGES

346-365

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s000330050002

DOI

http://dx.doi.org/10.1007/s000330050002

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018210128


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Catania", 
          "id": "https://www.grid.ac/institutes/grid.8158.4", 
          "name": [
            "Dipartimento di Matematica, Universit\u00e0 di Catania, Viale A. Doria 6, I-95125 Catania, Italia, e-mail: henning@dipmat.unict.it, IT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Struchtrup", 
        "givenName": "H.", 
        "id": "sg:person.01260205151.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260205151.47"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000-05", 
    "datePublishedReg": "2000-05-01", 
    "description": "A numerical scheme for moment equations of kinetic theory, due to LeTallec & Perlat, is considered for the calculation of stationary heat transfer in the Grad 13 moment system and linearized extended thermodynamics of 14 moments. It is shown that the required distance of grid points must be considerably smaller than the mean free path. Thus, the kinetic scheme is useful only in the case of large Knudsen numbers. Results of the numerical calculation for 13 and 14 moments are compared with an analytical solution for heat transfer with 13 moments. The results indicate that the boundary conditions do not guarantee conservation of energy at the walls. In order to overcome this deficiency a modification of the boundary conditions is presented and discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s000330050002", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1053636", 
        "issn": [
          "0044-2275", 
          "1420-9039"
        ], 
        "name": "Zeitschrift f\u00fcr angewandte Mathematik und Physik", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "51"
      }
    ], 
    "name": "Kinetic schemes and boundary conditions for moment equations", 
    "pagination": "346-365", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "56c3fc409ca415ba84e49cff45c3dca283afd684cf12f02d2b73513fd1281560"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s000330050002"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018210128"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s000330050002", 
      "https://app.dimensions.ai/details/publication/pub.1018210128"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000531.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs000330050002"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s000330050002'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s000330050002'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s000330050002'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s000330050002'


 

This table displays all metadata directly associated to this object as RDF triples.

61 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s000330050002 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N2fb76a6e91aa4770851e3750c49524b1
4 schema:datePublished 2000-05
5 schema:datePublishedReg 2000-05-01
6 schema:description A numerical scheme for moment equations of kinetic theory, due to LeTallec & Perlat, is considered for the calculation of stationary heat transfer in the Grad 13 moment system and linearized extended thermodynamics of 14 moments. It is shown that the required distance of grid points must be considerably smaller than the mean free path. Thus, the kinetic scheme is useful only in the case of large Knudsen numbers. Results of the numerical calculation for 13 and 14 moments are compared with an analytical solution for heat transfer with 13 moments. The results indicate that the boundary conditions do not guarantee conservation of energy at the walls. In order to overcome this deficiency a modification of the boundary conditions is presented and discussed.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N50859fe3034c46d0a5ac4b932513787d
11 Nefc9f3e2abf542d89c6e39630552c483
12 sg:journal.1053636
13 schema:name Kinetic schemes and boundary conditions for moment equations
14 schema:pagination 346-365
15 schema:productId N39843cd469094ed888cd23173659903f
16 Nedb68171421d4df684695ea27a792b8d
17 Nfe40d16c05b4460cb248e118157ad824
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018210128
19 https://doi.org/10.1007/s000330050002
20 schema:sdDatePublished 2019-04-11T02:14
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Ne164d1a9184c4d27b8f2683e25bcab16
23 schema:url http://link.springer.com/10.1007%2Fs000330050002
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N2fb76a6e91aa4770851e3750c49524b1 rdf:first sg:person.01260205151.47
28 rdf:rest rdf:nil
29 N39843cd469094ed888cd23173659903f schema:name dimensions_id
30 schema:value pub.1018210128
31 rdf:type schema:PropertyValue
32 N50859fe3034c46d0a5ac4b932513787d schema:volumeNumber 51
33 rdf:type schema:PublicationVolume
34 Ne164d1a9184c4d27b8f2683e25bcab16 schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 Nedb68171421d4df684695ea27a792b8d schema:name doi
37 schema:value 10.1007/s000330050002
38 rdf:type schema:PropertyValue
39 Nefc9f3e2abf542d89c6e39630552c483 schema:issueNumber 3
40 rdf:type schema:PublicationIssue
41 Nfe40d16c05b4460cb248e118157ad824 schema:name readcube_id
42 schema:value 56c3fc409ca415ba84e49cff45c3dca283afd684cf12f02d2b73513fd1281560
43 rdf:type schema:PropertyValue
44 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
45 schema:name Engineering
46 rdf:type schema:DefinedTerm
47 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
48 schema:name Interdisciplinary Engineering
49 rdf:type schema:DefinedTerm
50 sg:journal.1053636 schema:issn 0044-2275
51 1420-9039
52 schema:name Zeitschrift für angewandte Mathematik und Physik
53 rdf:type schema:Periodical
54 sg:person.01260205151.47 schema:affiliation https://www.grid.ac/institutes/grid.8158.4
55 schema:familyName Struchtrup
56 schema:givenName H.
57 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260205151.47
58 rdf:type schema:Person
59 https://www.grid.ac/institutes/grid.8158.4 schema:alternateName University of Catania
60 schema:name Dipartimento di Matematica, Università di Catania, Viale A. Doria 6, I-95125 Catania, Italia, e-mail: henning@dipmat.unict.it, IT
61 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...