Kinetic schemes and boundary conditions for moment equations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2000-05

AUTHORS

H. Struchtrup

ABSTRACT

A numerical scheme for moment equations of kinetic theory, due to LeTallec & Perlat, is considered for the calculation of stationary heat transfer in the Grad 13 moment system and linearized extended thermodynamics of 14 moments. It is shown that the required distance of grid points must be considerably smaller than the mean free path. Thus, the kinetic scheme is useful only in the case of large Knudsen numbers. Results of the numerical calculation for 13 and 14 moments are compared with an analytical solution for heat transfer with 13 moments. The results indicate that the boundary conditions do not guarantee conservation of energy at the walls. In order to overcome this deficiency a modification of the boundary conditions is presented and discussed. More... »

PAGES

346-365

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s000330050002

DOI

http://dx.doi.org/10.1007/s000330050002

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018210128


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Catania", 
          "id": "https://www.grid.ac/institutes/grid.8158.4", 
          "name": [
            "Dipartimento di Matematica, Universit\u00e0 di Catania, Viale A. Doria 6, I-95125 Catania, Italia, e-mail: henning@dipmat.unict.it, IT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Struchtrup", 
        "givenName": "H.", 
        "id": "sg:person.01260205151.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260205151.47"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000-05", 
    "datePublishedReg": "2000-05-01", 
    "description": "A numerical scheme for moment equations of kinetic theory, due to LeTallec & Perlat, is considered for the calculation of stationary heat transfer in the Grad 13 moment system and linearized extended thermodynamics of 14 moments. It is shown that the required distance of grid points must be considerably smaller than the mean free path. Thus, the kinetic scheme is useful only in the case of large Knudsen numbers. Results of the numerical calculation for 13 and 14 moments are compared with an analytical solution for heat transfer with 13 moments. The results indicate that the boundary conditions do not guarantee conservation of energy at the walls. In order to overcome this deficiency a modification of the boundary conditions is presented and discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s000330050002", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1053636", 
        "issn": [
          "0044-2275", 
          "1420-9039"
        ], 
        "name": "Zeitschrift f\u00fcr angewandte Mathematik und Physik", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "51"
      }
    ], 
    "name": "Kinetic schemes and boundary conditions for moment equations", 
    "pagination": "346-365", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "56c3fc409ca415ba84e49cff45c3dca283afd684cf12f02d2b73513fd1281560"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s000330050002"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018210128"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s000330050002", 
      "https://app.dimensions.ai/details/publication/pub.1018210128"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000531.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs000330050002"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s000330050002'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s000330050002'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s000330050002'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s000330050002'


 

This table displays all metadata directly associated to this object as RDF triples.

61 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s000330050002 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N6bb71c6e926545518c084a334b1e3552
4 schema:datePublished 2000-05
5 schema:datePublishedReg 2000-05-01
6 schema:description A numerical scheme for moment equations of kinetic theory, due to LeTallec & Perlat, is considered for the calculation of stationary heat transfer in the Grad 13 moment system and linearized extended thermodynamics of 14 moments. It is shown that the required distance of grid points must be considerably smaller than the mean free path. Thus, the kinetic scheme is useful only in the case of large Knudsen numbers. Results of the numerical calculation for 13 and 14 moments are compared with an analytical solution for heat transfer with 13 moments. The results indicate that the boundary conditions do not guarantee conservation of energy at the walls. In order to overcome this deficiency a modification of the boundary conditions is presented and discussed.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N1101d0dac1174c00a92db60d58c5afa0
11 Ncc227d1fffe04b89875334ebb3a506a5
12 sg:journal.1053636
13 schema:name Kinetic schemes and boundary conditions for moment equations
14 schema:pagination 346-365
15 schema:productId N092e40202c0944699b684290e41e09e5
16 N2fc44788f4894c97bea8923bbfa33bf2
17 Ncfad938ac085446f9c3b9699e02dfbe0
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018210128
19 https://doi.org/10.1007/s000330050002
20 schema:sdDatePublished 2019-04-11T02:14
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nbc955cb85abe49718dc8bfded7d0ac09
23 schema:url http://link.springer.com/10.1007%2Fs000330050002
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N092e40202c0944699b684290e41e09e5 schema:name readcube_id
28 schema:value 56c3fc409ca415ba84e49cff45c3dca283afd684cf12f02d2b73513fd1281560
29 rdf:type schema:PropertyValue
30 N1101d0dac1174c00a92db60d58c5afa0 schema:issueNumber 3
31 rdf:type schema:PublicationIssue
32 N2fc44788f4894c97bea8923bbfa33bf2 schema:name dimensions_id
33 schema:value pub.1018210128
34 rdf:type schema:PropertyValue
35 N6bb71c6e926545518c084a334b1e3552 rdf:first sg:person.01260205151.47
36 rdf:rest rdf:nil
37 Nbc955cb85abe49718dc8bfded7d0ac09 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 Ncc227d1fffe04b89875334ebb3a506a5 schema:volumeNumber 51
40 rdf:type schema:PublicationVolume
41 Ncfad938ac085446f9c3b9699e02dfbe0 schema:name doi
42 schema:value 10.1007/s000330050002
43 rdf:type schema:PropertyValue
44 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
45 schema:name Engineering
46 rdf:type schema:DefinedTerm
47 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
48 schema:name Interdisciplinary Engineering
49 rdf:type schema:DefinedTerm
50 sg:journal.1053636 schema:issn 0044-2275
51 1420-9039
52 schema:name Zeitschrift für angewandte Mathematik und Physik
53 rdf:type schema:Periodical
54 sg:person.01260205151.47 schema:affiliation https://www.grid.ac/institutes/grid.8158.4
55 schema:familyName Struchtrup
56 schema:givenName H.
57 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260205151.47
58 rdf:type schema:Person
59 https://www.grid.ac/institutes/grid.8158.4 schema:alternateName University of Catania
60 schema:name Dipartimento di Matematica, Università di Catania, Viale A. Doria 6, I-95125 Catania, Italia, e-mail: henning@dipmat.unict.it, IT
61 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...