Properties of solutions to porous medium problems with different sources and boundary conditions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-05-20

AUTHORS

Tongxing Li, Nicola Pintus, Giuseppe Viglialoro

ABSTRACT

In this paper, we study nonnegative and classical solutions u=u(x,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u=u(\mathbf{x},t)$$\end{document} to porous medium problems of the type where Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is a bounded and smooth domain of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N$$\end{document}, with N≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 1$$\end{document}, I=(0,t∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I=(0,t^*)$$\end{document} is the maximal interval of existence of u, m>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m>1$$\end{document} and u0(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_0(\mathbf{x})$$\end{document} is a nonnegative and sufficiently regular function. The problem is equipped with different boundary conditions and depending on such boundary conditions as well as on the expression of the source g, global existence and blow-up criteria for solutions to (◊\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Diamond $$\end{document}) are established. Additionally, in the three-dimensional setting and when blow-up occurs, lower bounds for the blow-up time t∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t^*$$\end{document} are also derived. More... »

PAGES

86

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00033-019-1130-2

DOI

http://dx.doi.org/10.1007/s00033-019-1130-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1114981151


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Control Science and Engineering, Shandong University, 250061, Jinan, Shandong, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.27255.37", 
          "name": [
            "School of Control Science and Engineering, Shandong University, 250061, Jinan, Shandong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Tongxing", 
        "id": "sg:person.016450705117.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016450705117.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Matematica e Informatica, Universit\u00e0 di Cagliari, V. le Merello 92, 09123, Cagliari, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7763.5", 
          "name": [
            "Dipartimento di Matematica e Informatica, Universit\u00e0 di Cagliari, V. le Merello 92, 09123, Cagliari, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pintus", 
        "givenName": "Nicola", 
        "id": "sg:person.07636504215.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07636504215.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Matematica e Informatica, Universit\u00e0 di Cagliari, V. le Merello 92, 09123, Cagliari, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7763.5", 
          "name": [
            "Dipartimento di Matematica e Informatica, Universit\u00e0 di Cagliari, V. le Merello 92, 09123, Cagliari, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Viglialoro", 
        "givenName": "Giuseppe", 
        "id": "sg:person.015475637345.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015475637345.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4612-5282-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002482440", 
          "https://doi.org/10.1007/978-1-4612-5282-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01168647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036412237", 
          "https://doi.org/10.1007/bf01168647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-010-9557-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109716865", 
          "https://doi.org/10.1007/978-94-010-9557-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002080050313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004268913", 
          "https://doi.org/10.1007/s002080050313"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-05-20", 
    "datePublishedReg": "2019-05-20", 
    "description": "In this paper, we study nonnegative and classical solutions u=u(x,t)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$u=u(\\mathbf{x},t)$$\\end{document} to porous medium problems of the type  where \u03a9\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\Omega $$\\end{document} is a bounded and smooth domain of RN\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathbb {R}}^N$$\\end{document}, with N\u22651\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$N\\ge 1$$\\end{document}, I=(0,t\u2217)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$I=(0,t^*)$$\\end{document} is the maximal interval of existence of u, m>1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$m>1$$\\end{document} and u0(x)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$u_0(\\mathbf{x})$$\\end{document} is a nonnegative and sufficiently regular function. The problem is equipped with different boundary conditions and depending on such boundary conditions as well as on the expression of the source g, global existence and blow-up criteria for solutions to (\u25ca\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\Diamond $$\\end{document}) are established. Additionally, in the three-dimensional setting and when blow-up occurs, lower bounds for the blow-up time t\u2217\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$t^*$$\\end{document} are also derived.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00033-019-1130-2", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8299994", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1053636", 
        "issn": [
          "0044-2275", 
          "1420-9039"
        ], 
        "name": "Zeitschrift f\u00fcr angewandte Mathematik und Physik", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "70"
      }
    ], 
    "keywords": [
      "porous media problems", 
      "classical solutions u", 
      "medium problem", 
      "boundary conditions", 
      "blow-up occurs", 
      "properties of solutions", 
      "solution u", 
      "smooth domain", 
      "maximal interval", 
      "regular functions", 
      "different boundary conditions", 
      "such boundary conditions", 
      "global existence", 
      "three-dimensional setting", 
      "lower bounds", 
      "problem", 
      "existence", 
      "solution", 
      "bounds", 
      "interval", 
      "conditions", 
      "expression", 
      "source", 
      "criteria", 
      "setting", 
      "properties", 
      "different sources", 
      "paper", 
      "types", 
      "domain", 
      "function", 
      "occurs", 
      "time"
    ], 
    "name": "Properties of solutions to porous medium problems with different sources and boundary conditions", 
    "pagination": "86", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1114981151"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00033-019-1130-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00033-019-1130-2", 
      "https://app.dimensions.ai/details/publication/pub.1114981151"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_803.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00033-019-1130-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00033-019-1130-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00033-019-1130-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00033-019-1130-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00033-019-1130-2'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      21 PREDICATES      62 URIs      49 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00033-019-1130-2 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 anzsrc-for:0105
4 schema:author N0b011f2cf6024a1e875f2b6317e0d719
5 schema:citation sg:pub.10.1007/978-1-4612-5282-5
6 sg:pub.10.1007/978-94-010-9557-0
7 sg:pub.10.1007/bf01168647
8 sg:pub.10.1007/s002080050313
9 schema:datePublished 2019-05-20
10 schema:datePublishedReg 2019-05-20
11 schema:description In this paper, we study nonnegative and classical solutions u=u(x,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u=u(\mathbf{x},t)$$\end{document} to porous medium problems of the type where Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is a bounded and smooth domain of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N$$\end{document}, with N≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 1$$\end{document}, I=(0,t∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I=(0,t^*)$$\end{document} is the maximal interval of existence of u, m>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m>1$$\end{document} and u0(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_0(\mathbf{x})$$\end{document} is a nonnegative and sufficiently regular function. The problem is equipped with different boundary conditions and depending on such boundary conditions as well as on the expression of the source g, global existence and blow-up criteria for solutions to (◊\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Diamond $$\end{document}) are established. Additionally, in the three-dimensional setting and when blow-up occurs, lower bounds for the blow-up time t∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t^*$$\end{document} are also derived.
12 schema:genre article
13 schema:isAccessibleForFree true
14 schema:isPartOf Nc8bab573f79b464abcd3eb806647b629
15 Ne92f8ed87b3a4d75a2f7d65d9060904f
16 sg:journal.1053636
17 schema:keywords blow-up occurs
18 boundary conditions
19 bounds
20 classical solutions u
21 conditions
22 criteria
23 different boundary conditions
24 different sources
25 domain
26 existence
27 expression
28 function
29 global existence
30 interval
31 lower bounds
32 maximal interval
33 medium problem
34 occurs
35 paper
36 porous media problems
37 problem
38 properties
39 properties of solutions
40 regular functions
41 setting
42 smooth domain
43 solution
44 solution u
45 source
46 such boundary conditions
47 three-dimensional setting
48 time
49 types
50 schema:name Properties of solutions to porous medium problems with different sources and boundary conditions
51 schema:pagination 86
52 schema:productId N61a262b786ca429d873dd87ef326fbaa
53 Ne68351a3ddc54ee9a65cee14f07c422e
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1114981151
55 https://doi.org/10.1007/s00033-019-1130-2
56 schema:sdDatePublished 2022-10-01T06:46
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N27b89bce1baf4d529314452c2907cacc
59 schema:url https://doi.org/10.1007/s00033-019-1130-2
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N0b011f2cf6024a1e875f2b6317e0d719 rdf:first sg:person.016450705117.13
64 rdf:rest N2ff668d226e64673ba965e2310402d4d
65 N27b89bce1baf4d529314452c2907cacc schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N2ff668d226e64673ba965e2310402d4d rdf:first sg:person.07636504215.69
68 rdf:rest N4d8e759a1292476f89093d4d1b2a2b32
69 N4d8e759a1292476f89093d4d1b2a2b32 rdf:first sg:person.015475637345.82
70 rdf:rest rdf:nil
71 N61a262b786ca429d873dd87ef326fbaa schema:name dimensions_id
72 schema:value pub.1114981151
73 rdf:type schema:PropertyValue
74 Nc8bab573f79b464abcd3eb806647b629 schema:issueNumber 3
75 rdf:type schema:PublicationIssue
76 Ne68351a3ddc54ee9a65cee14f07c422e schema:name doi
77 schema:value 10.1007/s00033-019-1130-2
78 rdf:type schema:PropertyValue
79 Ne92f8ed87b3a4d75a2f7d65d9060904f schema:volumeNumber 70
80 rdf:type schema:PublicationVolume
81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
82 schema:name Mathematical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
85 schema:name Applied Mathematics
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
88 schema:name Mathematical Physics
89 rdf:type schema:DefinedTerm
90 sg:grant.8299994 http://pending.schema.org/fundedItem sg:pub.10.1007/s00033-019-1130-2
91 rdf:type schema:MonetaryGrant
92 sg:journal.1053636 schema:issn 0044-2275
93 1420-9039
94 schema:name Zeitschrift für angewandte Mathematik und Physik
95 schema:publisher Springer Nature
96 rdf:type schema:Periodical
97 sg:person.015475637345.82 schema:affiliation grid-institutes:grid.7763.5
98 schema:familyName Viglialoro
99 schema:givenName Giuseppe
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015475637345.82
101 rdf:type schema:Person
102 sg:person.016450705117.13 schema:affiliation grid-institutes:grid.27255.37
103 schema:familyName Li
104 schema:givenName Tongxing
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016450705117.13
106 rdf:type schema:Person
107 sg:person.07636504215.69 schema:affiliation grid-institutes:grid.7763.5
108 schema:familyName Pintus
109 schema:givenName Nicola
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07636504215.69
111 rdf:type schema:Person
112 sg:pub.10.1007/978-1-4612-5282-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002482440
113 https://doi.org/10.1007/978-1-4612-5282-5
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/978-94-010-9557-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109716865
116 https://doi.org/10.1007/978-94-010-9557-0
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/bf01168647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036412237
119 https://doi.org/10.1007/bf01168647
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s002080050313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004268913
122 https://doi.org/10.1007/s002080050313
123 rdf:type schema:CreativeWork
124 grid-institutes:grid.27255.37 schema:alternateName School of Control Science and Engineering, Shandong University, 250061, Jinan, Shandong, People’s Republic of China
125 schema:name School of Control Science and Engineering, Shandong University, 250061, Jinan, Shandong, People’s Republic of China
126 rdf:type schema:Organization
127 grid-institutes:grid.7763.5 schema:alternateName Dipartimento di Matematica e Informatica, Università di Cagliari, V. le Merello 92, 09123, Cagliari, Italy
128 schema:name Dipartimento di Matematica e Informatica, Università di Cagliari, V. le Merello 92, 09123, Cagliari, Italy
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...