2017-04-21
AUTHORS ABSTRACTWe report our recent results from [1, 2] on the total curvature of graphs of curves in high codimension Euclidean space. We introduce the corresponding relaxed energy functional and provide an explicit representation formula. In the case of continuous Cartesian curves, i.e., of graphs cu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c_{u}}$$\end{document} of continuous functions u on an interval, the relaxed energy is finite if and only if the curve cu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c_{u}}$$\end{document} has bounded variation and finite total curvature. In this case, moreover, the total curvature does not depend on the Cantor part of the derivative of u. We also deal with the "elastic" case, corresponding to a superlinear dependence on the pointwise curvature. Different phenomena w.r.t. the "plastic" case are observed. A p-curvature functional is well-defined on continuous curves with finite relaxed energy, and the relaxed energy is given by the length plus the p-curvature. We treat the wider class of graphs of one-dimensional BV-functions. More... »
PAGES41-69
http://scigraph.springernature.com/pub.10.1007/s00032-017-0265-x
DOIhttp://dx.doi.org/10.1007/s00032-017-0265-x
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1084990180
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Universit\u00e0 degli Studi di Parma, Parco Area delle Scienze, 53/A, 43124, Parma, Italy",
"id": "http://www.grid.ac/institutes/grid.10383.39",
"name": [
"Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Universit\u00e0 degli Studi di Parma, Parco Area delle Scienze, 53/A, 43124, Parma, Italy"
],
"type": "Organization"
},
"familyName": "Acerbi",
"givenName": "Emilio",
"id": "sg:person.015135603203.54",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015135603203.54"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Universit\u00e0 degli Studi di Parma, Parco Area delle Scienze, 53/A, 43124, Parma, Italy",
"id": "http://www.grid.ac/institutes/grid.10383.39",
"name": [
"Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Universit\u00e0 degli Studi di Parma, Parco Area delle Scienze, 53/A, 43124, Parma, Italy"
],
"type": "Organization"
},
"familyName": "Mucci",
"givenName": "Domenico",
"id": "sg:person.013336161617.99",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013336161617.99"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-3-7643-8621-4_7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085181881",
"https://doi.org/10.1007/978-3-7643-8621-4_7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-662-06218-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029423957",
"https://doi.org/10.1007/978-3-662-06218-0"
],
"type": "CreativeWork"
}
],
"datePublished": "2017-04-21",
"datePublishedReg": "2017-04-21",
"description": "We report our recent results from [1, 2] on the total curvature of graphs of curves in high codimension Euclidean space. We introduce the corresponding relaxed energy functional and provide an explicit representation formula. In the case of continuous Cartesian curves, i.e., of graphs cu\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${c_{u}}$$\\end{document} of continuous functions u on an interval, the relaxed energy is finite if and only if the curve cu\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${c_{u}}$$\\end{document} has bounded variation and finite total curvature. In this case, moreover, the total curvature does not depend on the Cantor part of the derivative of u. We also deal with the \"elastic\" case, corresponding to a superlinear dependence on the pointwise curvature. Different phenomena w.r.t. the \"plastic\" case are observed. A p-curvature functional is well-defined on continuous curves with finite relaxed energy, and the relaxed energy is given by the length plus the p-curvature. We treat the wider class of graphs of one-dimensional BV-functions.",
"genre": "article",
"id": "sg:pub.10.1007/s00032-017-0265-x",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136491",
"issn": [
"0370-7377",
"1424-9286"
],
"name": "Milan Journal of Mathematics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "85"
}
],
"keywords": [
"total curvature",
"relaxed energy",
"curvature-dependent energy",
"explicit representation formula",
"continuous functions u",
"finite total curvature",
"wide class",
"representation formula",
"Euclidean space",
"p-curvature",
"Cantor part",
"function u",
"continuous curve",
"recent results",
"graph",
"curvature",
"pointwise curvature",
"functionals",
"superlinear dependence",
"energy",
"Cartesian curve",
"formula",
"space",
"curves",
"class",
"dependence",
"cases",
"derivatives",
"results",
"interval",
"length",
"variation",
"part",
"plastic"
],
"name": "Curvature-dependent Energies",
"pagination": "41-69",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1084990180"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00032-017-0265-x"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00032-017-0265-x",
"https://app.dimensions.ai/details/publication/pub.1084990180"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T17:06",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_735.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00032-017-0265-x"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00032-017-0265-x'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00032-017-0265-x'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00032-017-0265-x'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00032-017-0265-x'
This table displays all metadata directly associated to this object as RDF triples.
106 TRIPLES
21 PREDICATES
60 URIs
50 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00032-017-0265-x | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0101 |
3 | ″ | schema:author | Ncafb4660329244359f880f33e02a19fa |
4 | ″ | schema:citation | sg:pub.10.1007/978-3-662-06218-0 |
5 | ″ | ″ | sg:pub.10.1007/978-3-7643-8621-4_7 |
6 | ″ | schema:datePublished | 2017-04-21 |
7 | ″ | schema:datePublishedReg | 2017-04-21 |
8 | ″ | schema:description | We report our recent results from [1, 2] on the total curvature of graphs of curves in high codimension Euclidean space. We introduce the corresponding relaxed energy functional and provide an explicit representation formula. In the case of continuous Cartesian curves, i.e., of graphs cu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c_{u}}$$\end{document} of continuous functions u on an interval, the relaxed energy is finite if and only if the curve cu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c_{u}}$$\end{document} has bounded variation and finite total curvature. In this case, moreover, the total curvature does not depend on the Cantor part of the derivative of u. We also deal with the "elastic" case, corresponding to a superlinear dependence on the pointwise curvature. Different phenomena w.r.t. the "plastic" case are observed. A p-curvature functional is well-defined on continuous curves with finite relaxed energy, and the relaxed energy is given by the length plus the p-curvature. We treat the wider class of graphs of one-dimensional BV-functions. |
9 | ″ | schema:genre | article |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N13bde8162558442fb5fbc581f8d11241 |
12 | ″ | ″ | N518cd37a54684ef2b5617bceeaff755b |
13 | ″ | ″ | sg:journal.1136491 |
14 | ″ | schema:keywords | Cantor part |
15 | ″ | ″ | Cartesian curve |
16 | ″ | ″ | Euclidean space |
17 | ″ | ″ | cases |
18 | ″ | ″ | class |
19 | ″ | ″ | continuous curve |
20 | ″ | ″ | continuous functions u |
21 | ″ | ″ | curvature |
22 | ″ | ″ | curvature-dependent energy |
23 | ″ | ″ | curves |
24 | ″ | ″ | dependence |
25 | ″ | ″ | derivatives |
26 | ″ | ″ | energy |
27 | ″ | ″ | explicit representation formula |
28 | ″ | ″ | finite total curvature |
29 | ″ | ″ | formula |
30 | ″ | ″ | function u |
31 | ″ | ″ | functionals |
32 | ″ | ″ | graph |
33 | ″ | ″ | interval |
34 | ″ | ″ | length |
35 | ″ | ″ | p-curvature |
36 | ″ | ″ | part |
37 | ″ | ″ | plastic |
38 | ″ | ″ | pointwise curvature |
39 | ″ | ″ | recent results |
40 | ″ | ″ | relaxed energy |
41 | ″ | ″ | representation formula |
42 | ″ | ″ | results |
43 | ″ | ″ | space |
44 | ″ | ″ | superlinear dependence |
45 | ″ | ″ | total curvature |
46 | ″ | ″ | variation |
47 | ″ | ″ | wide class |
48 | ″ | schema:name | Curvature-dependent Energies |
49 | ″ | schema:pagination | 41-69 |
50 | ″ | schema:productId | N08d65c01ad324a7894a0b8275c8a2357 |
51 | ″ | ″ | N1be1362e2dfc43eb81899b27b490dc87 |
52 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1084990180 |
53 | ″ | ″ | https://doi.org/10.1007/s00032-017-0265-x |
54 | ″ | schema:sdDatePublished | 2022-08-04T17:06 |
55 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
56 | ″ | schema:sdPublisher | N5da957d01b804d3aa65d35c131d473d7 |
57 | ″ | schema:url | https://doi.org/10.1007/s00032-017-0265-x |
58 | ″ | sgo:license | sg:explorer/license/ |
59 | ″ | sgo:sdDataset | articles |
60 | ″ | rdf:type | schema:ScholarlyArticle |
61 | N08d65c01ad324a7894a0b8275c8a2357 | schema:name | dimensions_id |
62 | ″ | schema:value | pub.1084990180 |
63 | ″ | rdf:type | schema:PropertyValue |
64 | N13bde8162558442fb5fbc581f8d11241 | schema:volumeNumber | 85 |
65 | ″ | rdf:type | schema:PublicationVolume |
66 | N1be1362e2dfc43eb81899b27b490dc87 | schema:name | doi |
67 | ″ | schema:value | 10.1007/s00032-017-0265-x |
68 | ″ | rdf:type | schema:PropertyValue |
69 | N518cd37a54684ef2b5617bceeaff755b | schema:issueNumber | 1 |
70 | ″ | rdf:type | schema:PublicationIssue |
71 | N5da957d01b804d3aa65d35c131d473d7 | schema:name | Springer Nature - SN SciGraph project |
72 | ″ | rdf:type | schema:Organization |
73 | Nc5c9a469ae7f4684b564bde3b80f4beb | rdf:first | sg:person.013336161617.99 |
74 | ″ | rdf:rest | rdf:nil |
75 | Ncafb4660329244359f880f33e02a19fa | rdf:first | sg:person.015135603203.54 |
76 | ″ | rdf:rest | Nc5c9a469ae7f4684b564bde3b80f4beb |
77 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
78 | ″ | schema:name | Mathematical Sciences |
79 | ″ | rdf:type | schema:DefinedTerm |
80 | anzsrc-for:0101 | schema:inDefinedTermSet | anzsrc-for: |
81 | ″ | schema:name | Pure Mathematics |
82 | ″ | rdf:type | schema:DefinedTerm |
83 | sg:journal.1136491 | schema:issn | 0370-7377 |
84 | ″ | ″ | 1424-9286 |
85 | ″ | schema:name | Milan Journal of Mathematics |
86 | ″ | schema:publisher | Springer Nature |
87 | ″ | rdf:type | schema:Periodical |
88 | sg:person.013336161617.99 | schema:affiliation | grid-institutes:grid.10383.39 |
89 | ″ | schema:familyName | Mucci |
90 | ″ | schema:givenName | Domenico |
91 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013336161617.99 |
92 | ″ | rdf:type | schema:Person |
93 | sg:person.015135603203.54 | schema:affiliation | grid-institutes:grid.10383.39 |
94 | ″ | schema:familyName | Acerbi |
95 | ″ | schema:givenName | Emilio |
96 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015135603203.54 |
97 | ″ | rdf:type | schema:Person |
98 | sg:pub.10.1007/978-3-662-06218-0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1029423957 |
99 | ″ | ″ | https://doi.org/10.1007/978-3-662-06218-0 |
100 | ″ | rdf:type | schema:CreativeWork |
101 | sg:pub.10.1007/978-3-7643-8621-4_7 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1085181881 |
102 | ″ | ″ | https://doi.org/10.1007/978-3-7643-8621-4_7 |
103 | ″ | rdf:type | schema:CreativeWork |
104 | grid-institutes:grid.10383.39 | schema:alternateName | Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze, 53/A, 43124, Parma, Italy |
105 | ″ | schema:name | Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze, 53/A, 43124, Parma, Italy |
106 | ″ | rdf:type | schema:Organization |