Ontology type: schema:ScholarlyArticle
2018-09
AUTHORS ABSTRACTIn this note, we address a question raised by B. Krötz on the classification of G-invariant domains of holomorphy for irreducible admissible Banach representations of connected non-compact simple real linear Lie groups G. When G is not of Hermitian type, we give a complete description of such G-invariant domains for irreducible admissible uniformly bounded representations on reflexive Banach spaces and, in particular, for all irreducible uniformly bounded Hilbert representations. When the group G is Hermitian, we determine such G-invariant domains only when the representations considered are highest or lowest weight representations. More... »
PAGES755-764
http://scigraph.springernature.com/pub.10.1007/s00031-017-9468-z
DOIhttp://dx.doi.org/10.1007/s00031-017-9468-z
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1092751233
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institut \u00c9lie Cartan de Lorraine",
"id": "https://www.grid.ac/institutes/grid.462063.5",
"name": [
"Institut \u00c9lie Cartan de Lorraine, Universit\u00e9 de Lorraine, 3 rue Augustin Fresnel, BP 45112, 57073, Metz Cedex 03, France"
],
"type": "Organization"
},
"familyName": "LIU",
"givenName": "G.",
"id": "sg:person.014702231155.51",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014702231155.51"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Paderborn",
"id": "https://www.grid.ac/institutes/grid.5659.f",
"name": [
"Institut f\u00fcr Mathematik, Universit\u00e4t Paderborn, Warburger Stra\u03b2e 100, 33098, Paderborn, Germany"
],
"type": "Organization"
},
"familyName": "PARTHASARATHY",
"givenName": "A.",
"id": "sg:person.011443675626.02",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011443675626.02"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s11856-013-0056-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004171648",
"https://doi.org/10.1007/s11856-013-0056-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01453562",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005691564",
"https://doi.org/10.1007/bf01453562"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11511-007-0013-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006905833",
"https://doi.org/10.1007/s11511-007-0013-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11511-007-0013-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006905833",
"https://doi.org/10.1007/s11511-007-0013-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00222-007-0098-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012598382",
"https://doi.org/10.1007/s00222-007-0098-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00222-007-0098-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012598382",
"https://doi.org/10.1007/s00222-007-0098-2"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0002-9947-1987-0906811-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016239343"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00039-005-0504-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018812069",
"https://doi.org/10.1007/s00039-005-0504-0"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1515/crll.1987.380.108",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035089412"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-76892-0_1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041029536",
"https://doi.org/10.1007/978-3-540-76892-0_1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-76892-0_1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041029536",
"https://doi.org/10.1007/978-3-540-76892-0_1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00039-008-0684-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046483726",
"https://doi.org/10.1007/s00039-008-0684-5"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/1971142",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069676441"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4007/annals.2004.159.641",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1071866838"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4171/ggd/420",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091320417"
],
"type": "CreativeWork"
}
],
"datePublished": "2018-09",
"datePublishedReg": "2018-09-01",
"description": "In this note, we address a question raised by B. Kr\u00f6tz on the classification of G-invariant domains of holomorphy for irreducible admissible Banach representations of connected non-compact simple real linear Lie groups G. When G is not of Hermitian type, we give a complete description of such G-invariant domains for irreducible admissible uniformly bounded representations on reflexive Banach spaces and, in particular, for all irreducible uniformly bounded Hilbert representations. When the group G is Hermitian, we determine such G-invariant domains only when the representations considered are highest or lowest weight representations.",
"genre": "research_article",
"id": "sg:pub.10.1007/s00031-017-9468-z",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136210",
"issn": [
"1083-4362",
"1531-586X"
],
"name": "Transformation Groups",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "23"
}
],
"name": "DOMAINS OF HOLOMORPHY FOR IRREDUCIBLE ADMISSIBLE UNIFORMLY BOUNDED BANACH REPRESENTATIONS OF SIMPLE LIE GROUPS",
"pagination": "755-764",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"6f8d613aa8d6860b92aa6039530dccfdeb81e9936a0f9dac28c1d3c31bc2eb1d"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00031-017-9468-z"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1092751233"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00031-017-9468-z",
"https://app.dimensions.ai/details/publication/pub.1092751233"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T13:06",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000484.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007/s00031-017-9468-z"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00031-017-9468-z'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00031-017-9468-z'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00031-017-9468-z'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00031-017-9468-z'
This table displays all metadata directly associated to this object as RDF triples.
114 TRIPLES
21 PREDICATES
39 URIs
19 LITERALS
7 BLANK NODES