Cotangent Bundle To The Flag Variety–I View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12-05

AUTHORS

V. LAKSHMIBAI, C. S. SESHADRI, R. SINGH

ABSTRACT

We show that there is a SLn-stable closed subset of an affine Schubert variety in the infinite-dimensional flag variety (associated to the Kac-Moody group SLn̂\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \widehat{{\mathrm{SL}}_n} $$\end{document}) which is a natural compactification of the cotangent bundle to the finite-dimensional flag variety SLn/B. More... »

PAGES

127-147

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00031-017-9466-1

DOI

http://dx.doi.org/10.1007/s00031-017-9466-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1093155364


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Northeastern University, 02115, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.261112.7", 
          "name": [
            "Department of Mathematics, Northeastern University, 02115, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "LAKSHMIBAI", 
        "givenName": "V.", 
        "id": "sg:person.01113620334.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113620334.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chennai Mathematical Institute, Siruseri, Kelambakkam, 603103, Chennai, Tamil Nadu, India", 
          "id": "http://www.grid.ac/institutes/grid.444722.3", 
          "name": [
            "Chennai Mathematical Institute, Siruseri, Kelambakkam, 603103, Chennai, Tamil Nadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "SESHADRI", 
        "givenName": "C. S.", 
        "id": "sg:person.012424220062.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012424220062.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Northeastern University, 02115, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.261112.7", 
          "name": [
            "Department of Mathematics, Northeastern University, 02115, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "SINGH", 
        "givenName": "R.", 
        "id": "sg:person.012647664355.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012647664355.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4612-0105-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042438915", 
          "https://doi.org/10.1007/978-1-4612-0105-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00031-015-9356-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009539204", 
          "https://doi.org/10.1007/s00031-015-9356-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00029-013-0125-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005949589", 
          "https://doi.org/10.1007/s00029-013-0125-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12-05", 
    "datePublishedReg": "2017-12-05", 
    "description": "We show that there is a SLn-stable closed subset of an affine Schubert variety in the infinite-dimensional flag variety (associated to the Kac-Moody group SLn\u0302\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\widehat{{\\mathrm{SL}}_n} $$\\end{document}) which is a natural compactification of the cotangent bundle to the finite-dimensional flag variety SLn/B.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00031-017-9466-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136210", 
        "issn": [
          "1083-4362", 
          "1531-586X"
        ], 
        "name": "Transformation Groups", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "keywords": [
      "B.", 
      "subset", 
      "variety", 
      "bundles", 
      "flag varieties", 
      "affine Schubert variety", 
      "cotangent bundle", 
      "natural compactification", 
      "closed subset", 
      "Schubert varieties", 
      "compactification", 
      "cotangent", 
      "SLn-stable closed subset", 
      "infinite-dimensional flag variety", 
      "finite-dimensional flag variety SLn/B.", 
      "flag variety SLn/B.", 
      "variety SLn/B.", 
      "SLn/B."
    ], 
    "name": "COTANGENT BUNDLE TO THE FLAG VARIETY\u2013I", 
    "pagination": "127-147", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1093155364"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00031-017-9466-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00031-017-9466-1", 
      "https://app.dimensions.ai/details/publication/pub.1093155364"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_747.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00031-017-9466-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00031-017-9466-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00031-017-9466-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00031-017-9466-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00031-017-9466-1'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      22 PREDICATES      46 URIs      35 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00031-017-9466-1 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N32ab88364651406aa592be669c64c19c
4 schema:citation sg:pub.10.1007/978-1-4612-0105-2
5 sg:pub.10.1007/s00029-013-0125-7
6 sg:pub.10.1007/s00031-015-9356-3
7 schema:datePublished 2017-12-05
8 schema:datePublishedReg 2017-12-05
9 schema:description We show that there is a SLn-stable closed subset of an affine Schubert variety in the infinite-dimensional flag variety (associated to the Kac-Moody group SLn̂\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \widehat{{\mathrm{SL}}_n} $$\end{document}) which is a natural compactification of the cotangent bundle to the finite-dimensional flag variety SLn/B.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf N241d60de75fa435192285e8710a3457b
14 Naff8744ad4614855984358f571e60053
15 sg:journal.1136210
16 schema:keywords B.
17 SLn-stable closed subset
18 SLn/B.
19 Schubert varieties
20 affine Schubert variety
21 bundles
22 closed subset
23 compactification
24 cotangent
25 cotangent bundle
26 finite-dimensional flag variety SLn/B.
27 flag varieties
28 flag variety SLn/B.
29 infinite-dimensional flag variety
30 natural compactification
31 subset
32 variety
33 variety SLn/B.
34 schema:name COTANGENT BUNDLE TO THE FLAG VARIETY–I
35 schema:pagination 127-147
36 schema:productId N032a76288d324fcca5910c78b4c24173
37 N402181045f174bae8819cfae3f95d8a1
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093155364
39 https://doi.org/10.1007/s00031-017-9466-1
40 schema:sdDatePublished 2021-12-01T19:39
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N0553eecb916443c58ee0c8ab492b112e
43 schema:url https://doi.org/10.1007/s00031-017-9466-1
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N032a76288d324fcca5910c78b4c24173 schema:name doi
48 schema:value 10.1007/s00031-017-9466-1
49 rdf:type schema:PropertyValue
50 N0553eecb916443c58ee0c8ab492b112e schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N155f2356b09447ec9a77a30c7a67ab08 rdf:first sg:person.012424220062.86
53 rdf:rest N6786c8904d0640439de6f56aacc5c6ba
54 N241d60de75fa435192285e8710a3457b schema:issueNumber 1
55 rdf:type schema:PublicationIssue
56 N32ab88364651406aa592be669c64c19c rdf:first sg:person.01113620334.38
57 rdf:rest N155f2356b09447ec9a77a30c7a67ab08
58 N402181045f174bae8819cfae3f95d8a1 schema:name dimensions_id
59 schema:value pub.1093155364
60 rdf:type schema:PropertyValue
61 N6786c8904d0640439de6f56aacc5c6ba rdf:first sg:person.012647664355.21
62 rdf:rest rdf:nil
63 Naff8744ad4614855984358f571e60053 schema:volumeNumber 24
64 rdf:type schema:PublicationVolume
65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
66 schema:name Mathematical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
69 schema:name Pure Mathematics
70 rdf:type schema:DefinedTerm
71 sg:journal.1136210 schema:issn 1083-4362
72 1531-586X
73 schema:name Transformation Groups
74 schema:publisher Springer Nature
75 rdf:type schema:Periodical
76 sg:person.01113620334.38 schema:affiliation grid-institutes:grid.261112.7
77 schema:familyName LAKSHMIBAI
78 schema:givenName V.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113620334.38
80 rdf:type schema:Person
81 sg:person.012424220062.86 schema:affiliation grid-institutes:grid.444722.3
82 schema:familyName SESHADRI
83 schema:givenName C. S.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012424220062.86
85 rdf:type schema:Person
86 sg:person.012647664355.21 schema:affiliation grid-institutes:grid.261112.7
87 schema:familyName SINGH
88 schema:givenName R.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012647664355.21
90 rdf:type schema:Person
91 sg:pub.10.1007/978-1-4612-0105-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042438915
92 https://doi.org/10.1007/978-1-4612-0105-2
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/s00029-013-0125-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005949589
95 https://doi.org/10.1007/s00029-013-0125-7
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s00031-015-9356-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009539204
98 https://doi.org/10.1007/s00031-015-9356-3
99 rdf:type schema:CreativeWork
100 grid-institutes:grid.261112.7 schema:alternateName Department of Mathematics, Northeastern University, 02115, Boston, MA, USA
101 schema:name Department of Mathematics, Northeastern University, 02115, Boston, MA, USA
102 rdf:type schema:Organization
103 grid-institutes:grid.444722.3 schema:alternateName Chennai Mathematical Institute, Siruseri, Kelambakkam, 603103, Chennai, Tamil Nadu, India
104 schema:name Chennai Mathematical Institute, Siruseri, Kelambakkam, 603103, Chennai, Tamil Nadu, India
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...