Comparison Of Canonical Bases For Schur And Universal Enveloping Algebras View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-09

AUTHORS

BEN WEBSTER

ABSTRACT

We show that the canonical bases in and the Schur algebra are compatible; in fact we extend this result to p-canonical bases. This follows immediately from a fullness result for a functor categorifying this map. In order to prove this result, we also explain the connections between categorifications of the Schur algebra which arise from parity sheaves on partial ag varieties, singular Soergel bimodules and Khovanov and Lauda's “flag category," which are of some independent interest. More... »

PAGES

869-883

Journal

TITLE

Transformation Groups

ISSUE

3

VOLUME

22

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00031-016-9409-2

DOI

http://dx.doi.org/10.1007/s00031-016-9409-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033784027


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Virginia", 
          "id": "https://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Mathematics, University of Virginia, Charlottesville, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "WEBSTER", 
        "givenName": "BEN", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0022-4049(99)00138-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010798523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-4049(99)00138-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010798523"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09", 
    "datePublishedReg": "2017-09-01", 
    "description": "We show that the canonical bases in and the Schur algebra are compatible; in fact we extend this result to p-canonical bases. This follows immediately from a fullness result for a functor categorifying this map. In order to prove this result, we also explain the connections between categorifications of the Schur algebra which arise from parity sheaves on partial ag varieties, singular Soergel bimodules and Khovanov and Lauda's \u201cflag category,\" which are of some independent interest.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00031-016-9409-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136210", 
        "issn": [
          "1083-4362", 
          "1531-586X"
        ], 
        "name": "Transformation Groups", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "COMPARISON OF CANONICAL BASES FOR SCHUR AND UNIVERSAL ENVELOPING ALGEBRAS", 
    "pagination": "869-883", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a0ef6e6fa47f278d65162960dc81efd0517ba36ef8d8db5538e3bea668c179bf"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00031-016-9409-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033784027"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00031-016-9409-2", 
      "https://app.dimensions.ai/details/publication/pub.1033784027"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70043_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00031-016-9409-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00031-016-9409-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00031-016-9409-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00031-016-9409-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00031-016-9409-2'


 

This table displays all metadata directly associated to this object as RDF triples.

63 TRIPLES      21 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00031-016-9409-2 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N6d3db7f55ea147aba9ee0c530db9c448
4 schema:citation https://doi.org/10.1016/s0022-4049(99)00138-3
5 schema:datePublished 2017-09
6 schema:datePublishedReg 2017-09-01
7 schema:description We show that the canonical bases in and the Schur algebra are compatible; in fact we extend this result to p-canonical bases. This follows immediately from a fullness result for a functor categorifying this map. In order to prove this result, we also explain the connections between categorifications of the Schur algebra which arise from parity sheaves on partial ag varieties, singular Soergel bimodules and Khovanov and Lauda's “flag category," which are of some independent interest.
8 schema:genre research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N8c6fd756bada43f68fb45d5f2c316d6a
12 N8e5b373311e541b0b913f34dd563f127
13 sg:journal.1136210
14 schema:name COMPARISON OF CANONICAL BASES FOR SCHUR AND UNIVERSAL ENVELOPING ALGEBRAS
15 schema:pagination 869-883
16 schema:productId N72f109207167452f8c44ea4791db7bd0
17 Na35f8ea111fb4538b2f9cf153efa9ad4
18 Nd42360c28c854c85adeadc65ea020421
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033784027
20 https://doi.org/10.1007/s00031-016-9409-2
21 schema:sdDatePublished 2019-04-11T12:39
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher Nf06c87750c684a68a138a29f59830678
24 schema:url https://link.springer.com/10.1007%2Fs00031-016-9409-2
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N327b40c4f1f94e31901fe0acacbb2a95 schema:affiliation https://www.grid.ac/institutes/grid.27755.32
29 schema:familyName WEBSTER
30 schema:givenName BEN
31 rdf:type schema:Person
32 N6d3db7f55ea147aba9ee0c530db9c448 rdf:first N327b40c4f1f94e31901fe0acacbb2a95
33 rdf:rest rdf:nil
34 N72f109207167452f8c44ea4791db7bd0 schema:name dimensions_id
35 schema:value pub.1033784027
36 rdf:type schema:PropertyValue
37 N8c6fd756bada43f68fb45d5f2c316d6a schema:issueNumber 3
38 rdf:type schema:PublicationIssue
39 N8e5b373311e541b0b913f34dd563f127 schema:volumeNumber 22
40 rdf:type schema:PublicationVolume
41 Na35f8ea111fb4538b2f9cf153efa9ad4 schema:name doi
42 schema:value 10.1007/s00031-016-9409-2
43 rdf:type schema:PropertyValue
44 Nd42360c28c854c85adeadc65ea020421 schema:name readcube_id
45 schema:value a0ef6e6fa47f278d65162960dc81efd0517ba36ef8d8db5538e3bea668c179bf
46 rdf:type schema:PropertyValue
47 Nf06c87750c684a68a138a29f59830678 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
50 schema:name Mathematical Sciences
51 rdf:type schema:DefinedTerm
52 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
53 schema:name Pure Mathematics
54 rdf:type schema:DefinedTerm
55 sg:journal.1136210 schema:issn 1083-4362
56 1531-586X
57 schema:name Transformation Groups
58 rdf:type schema:Periodical
59 https://doi.org/10.1016/s0022-4049(99)00138-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010798523
60 rdf:type schema:CreativeWork
61 https://www.grid.ac/institutes/grid.27755.32 schema:alternateName University of Virginia
62 schema:name Department of Mathematics, University of Virginia, Charlottesville, VA, USA
63 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...