One-dimensional nil-DAHA and Whittaker functions II View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-03

AUTHORS

Ivan Cherednik, Daniel Orr

ABSTRACT

This work is devoted to the theory of nil-DAHA for the root system A1 and its applications to symmetric and nonsymmetric (spinor) global q-Whittaker functions, integrating the q-Toda eigenvalue problem and its Dunkl-type nonsymmetric version. The spinor global functions extend the symmetric ones to the case of all Demazure characters (not only those for dominant weights); the corresponding Gromov–Witten theory is not known. The main result of the paper is a complete algebraic theory of these functions in terms of induced modules of the core subalgebra of nil-DAHA. It is the first instance of the DAHA theory of canonical-crystal bases, quite non-trivial even for A1. As the second part of this work, this paper is mainly devoted to the theory of the core subalgebra of nil-DAHA, its induced modules and their applications to the nonsymmetric global Whittaker functions. The first part was about the analytic aspects of our construction and a general algebraic theory of nil-DAHA for A1. More... »

PAGES

23-59

References to SciGraph publications

  • 2012-12. One-Dimensional Nil-Daha and Whittaker Functions I in TRANSFORMATION GROUPS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00031-013-9210-4

    DOI

    http://dx.doi.org/10.1007/s00031-013-9210-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1046075756


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of North Carolina System", 
              "id": "https://www.grid.ac/institutes/grid.410711.2", 
              "name": [
                "Department of Mathematics, University of North Carolina, 27599, Chapel Hill, NC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cherednik", 
            "givenName": "Ivan", 
            "id": "sg:person.010223660664.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010223660664.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of North Carolina System", 
              "id": "https://www.grid.ac/institutes/grid.410711.2", 
              "name": [
                "Department of Mathematics, University of North Carolina, 27599, Chapel Hill, NC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Orr", 
            "givenName": "Daniel", 
            "id": "sg:person.014572731451.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014572731451.55"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00031-012-9204-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012657185", 
              "https://doi.org/10.1007/s00031-012-9204-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s1474748004000155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054938126"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-03", 
        "datePublishedReg": "2013-03-01", 
        "description": "This work is devoted to the theory of nil-DAHA for the root system A1 and its applications to symmetric and nonsymmetric (spinor) global q-Whittaker functions, integrating the q-Toda eigenvalue problem and its Dunkl-type nonsymmetric version. The spinor global functions extend the symmetric ones to the case of all Demazure characters (not only those for dominant weights); the corresponding Gromov\u2013Witten theory is not known. The main result of the paper is a complete algebraic theory of these functions in terms of induced modules of the core subalgebra of nil-DAHA. It is the first instance of the DAHA theory of canonical-crystal bases, quite non-trivial even for A1. As the second part of this work, this paper is mainly devoted to the theory of the core subalgebra of nil-DAHA, its induced modules and their applications to the nonsymmetric global Whittaker functions. The first part was about the analytic aspects of our construction and a general algebraic theory of nil-DAHA for A1.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00031-013-9210-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136210", 
            "issn": [
              "1083-4362", 
              "1531-586X"
            ], 
            "name": "Transformation Groups", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "18"
          }
        ], 
        "name": "One-dimensional nil-DAHA and Whittaker functions II", 
        "pagination": "23-59", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "db7acfe324f2a8d4dc69dc4cfadb134a172aa32390bbf21c7cc3b363a27b14ea"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00031-013-9210-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1046075756"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00031-013-9210-4", 
          "https://app.dimensions.ai/details/publication/pub.1046075756"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T22:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000491.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s00031-013-9210-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00031-013-9210-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00031-013-9210-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00031-013-9210-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00031-013-9210-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    75 TRIPLES      21 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00031-013-9210-4 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N0556a1c973f44f5d9f16d2f180da66d8
    4 schema:citation sg:pub.10.1007/s00031-012-9204-7
    5 https://doi.org/10.1017/s1474748004000155
    6 schema:datePublished 2013-03
    7 schema:datePublishedReg 2013-03-01
    8 schema:description This work is devoted to the theory of nil-DAHA for the root system A1 and its applications to symmetric and nonsymmetric (spinor) global q-Whittaker functions, integrating the q-Toda eigenvalue problem and its Dunkl-type nonsymmetric version. The spinor global functions extend the symmetric ones to the case of all Demazure characters (not only those for dominant weights); the corresponding Gromov–Witten theory is not known. The main result of the paper is a complete algebraic theory of these functions in terms of induced modules of the core subalgebra of nil-DAHA. It is the first instance of the DAHA theory of canonical-crystal bases, quite non-trivial even for A1. As the second part of this work, this paper is mainly devoted to the theory of the core subalgebra of nil-DAHA, its induced modules and their applications to the nonsymmetric global Whittaker functions. The first part was about the analytic aspects of our construction and a general algebraic theory of nil-DAHA for A1.
    9 schema:genre research_article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N99755e9a6c864ea3b09eb7ffbd0c8aed
    13 Naf9ae437881f4959a2afa72426e1eb7e
    14 sg:journal.1136210
    15 schema:name One-dimensional nil-DAHA and Whittaker functions II
    16 schema:pagination 23-59
    17 schema:productId N12bffb53fa8e4c52ad81778a35b84f3f
    18 N1f54fd8e941c461ba895555e8ee4804f
    19 N25f5d809abd747b186813a232bec3d5e
    20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046075756
    21 https://doi.org/10.1007/s00031-013-9210-4
    22 schema:sdDatePublished 2019-04-10T22:27
    23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    24 schema:sdPublisher Ne48dca91377847e99c82a19d5ddbf365
    25 schema:url http://link.springer.com/10.1007/s00031-013-9210-4
    26 sgo:license sg:explorer/license/
    27 sgo:sdDataset articles
    28 rdf:type schema:ScholarlyArticle
    29 N0556a1c973f44f5d9f16d2f180da66d8 rdf:first sg:person.010223660664.58
    30 rdf:rest N95c021cdced94b339c38f2d9fea62789
    31 N12bffb53fa8e4c52ad81778a35b84f3f schema:name dimensions_id
    32 schema:value pub.1046075756
    33 rdf:type schema:PropertyValue
    34 N1f54fd8e941c461ba895555e8ee4804f schema:name readcube_id
    35 schema:value db7acfe324f2a8d4dc69dc4cfadb134a172aa32390bbf21c7cc3b363a27b14ea
    36 rdf:type schema:PropertyValue
    37 N25f5d809abd747b186813a232bec3d5e schema:name doi
    38 schema:value 10.1007/s00031-013-9210-4
    39 rdf:type schema:PropertyValue
    40 N95c021cdced94b339c38f2d9fea62789 rdf:first sg:person.014572731451.55
    41 rdf:rest rdf:nil
    42 N99755e9a6c864ea3b09eb7ffbd0c8aed schema:volumeNumber 18
    43 rdf:type schema:PublicationVolume
    44 Naf9ae437881f4959a2afa72426e1eb7e schema:issueNumber 1
    45 rdf:type schema:PublicationIssue
    46 Ne48dca91377847e99c82a19d5ddbf365 schema:name Springer Nature - SN SciGraph project
    47 rdf:type schema:Organization
    48 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    49 schema:name Mathematical Sciences
    50 rdf:type schema:DefinedTerm
    51 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    52 schema:name Pure Mathematics
    53 rdf:type schema:DefinedTerm
    54 sg:journal.1136210 schema:issn 1083-4362
    55 1531-586X
    56 schema:name Transformation Groups
    57 rdf:type schema:Periodical
    58 sg:person.010223660664.58 schema:affiliation https://www.grid.ac/institutes/grid.410711.2
    59 schema:familyName Cherednik
    60 schema:givenName Ivan
    61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010223660664.58
    62 rdf:type schema:Person
    63 sg:person.014572731451.55 schema:affiliation https://www.grid.ac/institutes/grid.410711.2
    64 schema:familyName Orr
    65 schema:givenName Daniel
    66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014572731451.55
    67 rdf:type schema:Person
    68 sg:pub.10.1007/s00031-012-9204-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012657185
    69 https://doi.org/10.1007/s00031-012-9204-7
    70 rdf:type schema:CreativeWork
    71 https://doi.org/10.1017/s1474748004000155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054938126
    72 rdf:type schema:CreativeWork
    73 https://www.grid.ac/institutes/grid.410711.2 schema:alternateName University of North Carolina System
    74 schema:name Department of Mathematics, University of North Carolina, 27599, Chapel Hill, NC, USA
    75 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...