Module categories, weak Hopf algebras and modular invariants View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2003-06

AUTHORS

Victor Ostrik

ABSTRACT

We develop a theory of module categories over monoidal categories (this is a straightforward categorization of modules over rings). As applications we show that any semisimple monoidal category with finitely many simple objects is equivalent to the category of representations of a weak Hopf algebra (theorem of T. Hayashi) and we classify module categories over the fusion category of sl(2) at a positive integer level where we meet once again the ADE classification pattern. More... »

PAGES

177-206

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00031-003-0515-6

DOI

http://dx.doi.org/10.1007/s00031-003-0515-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041703687


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ostrik", 
        "givenName": "Victor", 
        "id": "sg:person.016645413467.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016645413467.18"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2003-06", 
    "datePublishedReg": "2003-06-01", 
    "description": "We develop a theory of module categories over monoidal categories (this is a straightforward categorization of modules over rings). As applications we show that any semisimple monoidal category with finitely many simple objects is equivalent to the category of representations of a weak Hopf algebra (theorem of T. Hayashi) and we classify module categories over the fusion category of sl(2) at a positive integer level where we meet once again the ADE classification pattern.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00031-003-0515-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136210", 
        "issn": [
          "1083-4362", 
          "1531-586X"
        ], 
        "name": "Transformation Groups", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Module categories, weak Hopf algebras and modular invariants", 
    "pagination": "177-206", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c6a8c8e74dfcf26969a201305c9d4e839e36ec279d078eed54b393fcd069b0a8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00031-003-0515-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041703687"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00031-003-0515-6", 
      "https://app.dimensions.ai/details/publication/pub.1041703687"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000490.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00031-003-0515-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00031-003-0515-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00031-003-0515-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00031-003-0515-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00031-003-0515-6'


 

This table displays all metadata directly associated to this object as RDF triples.

61 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00031-003-0515-6 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ne0501d95a5344e4c81bee58b62972710
4 schema:datePublished 2003-06
5 schema:datePublishedReg 2003-06-01
6 schema:description We develop a theory of module categories over monoidal categories (this is a straightforward categorization of modules over rings). As applications we show that any semisimple monoidal category with finitely many simple objects is equivalent to the category of representations of a weak Hopf algebra (theorem of T. Hayashi) and we classify module categories over the fusion category of sl(2) at a positive integer level where we meet once again the ADE classification pattern.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf Na518d762800a4fb3b268255af571fdc6
11 Ncccd0fd82c3c4b0db8c1b8554356f41b
12 sg:journal.1136210
13 schema:name Module categories, weak Hopf algebras and modular invariants
14 schema:pagination 177-206
15 schema:productId N1526de9b07584134bc9f9f4dbe6a17a1
16 N380afb2244f74dc3ad837df280087558
17 N97d702bfd9224c21bbccd6e39e58d9a9
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041703687
19 https://doi.org/10.1007/s00031-003-0515-6
20 schema:sdDatePublished 2019-04-10T19:52
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N4669cca6b9d84643b9da0d6f0208cceb
23 schema:url http://link.springer.com/10.1007/s00031-003-0515-6
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N1526de9b07584134bc9f9f4dbe6a17a1 schema:name readcube_id
28 schema:value c6a8c8e74dfcf26969a201305c9d4e839e36ec279d078eed54b393fcd069b0a8
29 rdf:type schema:PropertyValue
30 N380afb2244f74dc3ad837df280087558 schema:name dimensions_id
31 schema:value pub.1041703687
32 rdf:type schema:PropertyValue
33 N4669cca6b9d84643b9da0d6f0208cceb schema:name Springer Nature - SN SciGraph project
34 rdf:type schema:Organization
35 N97d702bfd9224c21bbccd6e39e58d9a9 schema:name doi
36 schema:value 10.1007/s00031-003-0515-6
37 rdf:type schema:PropertyValue
38 Na518d762800a4fb3b268255af571fdc6 schema:issueNumber 2
39 rdf:type schema:PublicationIssue
40 Ncccd0fd82c3c4b0db8c1b8554356f41b schema:volumeNumber 8
41 rdf:type schema:PublicationVolume
42 Ne0501d95a5344e4c81bee58b62972710 rdf:first sg:person.016645413467.18
43 rdf:rest rdf:nil
44 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
45 schema:name Mathematical Sciences
46 rdf:type schema:DefinedTerm
47 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
48 schema:name Pure Mathematics
49 rdf:type schema:DefinedTerm
50 sg:journal.1136210 schema:issn 1083-4362
51 1531-586X
52 schema:name Transformation Groups
53 rdf:type schema:Periodical
54 sg:person.016645413467.18 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
55 schema:familyName Ostrik
56 schema:givenName Victor
57 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016645413467.18
58 rdf:type schema:Person
59 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
60 schema:name Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
61 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...