Regularity results for eikonal-type equations with nonsmooth coefficients View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-12

AUTHORS

Piermarco Cannarsa, Pierre Cardaliaguet

ABSTRACT

Solutions of the Hamilton–Jacobi equation H(x,−Du(x)) = 1, where H(·, p) is Hölder continuous and the level-sets {H(x, ·) ≤ 1} are convex and satisfy positive lower and upper curvature bounds, are shown to be locally semiconcave with a power-like modulus. An essential step of the proof is the -regularity of the extremal trajectories associated with the multifunction generated by DpH. More... »

PAGES

751-769

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00030-011-0150-1

DOI

http://dx.doi.org/10.1007/s00030-011-0150-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031022234


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Rome Tor Vergata", 
          "id": "https://www.grid.ac/institutes/grid.6530.0", 
          "name": [
            "Dipartimento di Matematica, Universit\u00e0 di Roma \u201cTor Vergata\u201d, Via della Ricerca Scientifica 1, 00133, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cannarsa", 
        "givenName": "Piermarco", 
        "id": "sg:person.014257010655.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre De Recherche en Math\u00e9matiques de la D\u00e9cision", 
          "id": "https://www.grid.ac/institutes/grid.463852.e", 
          "name": [
            "CEREMADE, Universit\u00e9 Paris-Dauphine, UMR CNRS 7534, Place du Mar\u00e9chal De Lattre, De Tassigny, 75775, Paris Cedex 16, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cardaliaguet", 
        "givenName": "Pierre", 
        "id": "sg:person.012147216327.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012147216327.96"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0362-546x(94)e0091-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001105785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b138356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007174052", 
          "https://doi.org/10.1007/b138356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1007174052", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1007652222", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-8176-4755-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007652222", 
          "https://doi.org/10.1007/978-0-8176-4755-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-8176-4755-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007652222", 
          "https://doi.org/10.1007/978-0-8176-4755-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s1079-6762-07-00173-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015797717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-06-04195-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027699496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0362-546x(89)90056-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032197658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0329068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062844322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1512/iumj.2011.60.4322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067514035"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-12", 
    "datePublishedReg": "2012-12-01", 
    "description": "Solutions of the Hamilton\u2013Jacobi equation H(x,\u2212Du(x)) = 1, where H(\u00b7, p) is H\u00f6lder continuous and the level-sets {H(x, \u00b7) \u2264 1} are convex and satisfy positive lower and upper curvature bounds, are shown to be locally semiconcave with a power-like modulus. An essential step of the proof is the -regularity of the extremal trajectories associated with the multifunction generated by DpH.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00030-011-0150-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136849", 
        "issn": [
          "1021-9722", 
          "1420-9004"
        ], 
        "name": "Nonlinear Differential Equations and Applications NoDEA", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Regularity results for eikonal-type equations with nonsmooth coefficients", 
    "pagination": "751-769", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "93ca074a6ea4aa2d689a72f7dcb197d0a84a9d7b6d1d30406440b0a16a1f399b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00030-011-0150-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031022234"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00030-011-0150-1", 
      "https://app.dimensions.ai/details/publication/pub.1031022234"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000489.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00030-011-0150-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00030-011-0150-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00030-011-0150-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00030-011-0150-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00030-011-0150-1'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00030-011-0150-1 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N2197d46073ad4cd6ab22cea7a261ccee
4 schema:citation sg:pub.10.1007/978-0-8176-4755-1
5 sg:pub.10.1007/b138356
6 https://app.dimensions.ai/details/publication/pub.1007174052
7 https://app.dimensions.ai/details/publication/pub.1007652222
8 https://doi.org/10.1016/0362-546x(89)90056-4
9 https://doi.org/10.1016/0362-546x(94)e0091-t
10 https://doi.org/10.1090/s0002-9947-06-04195-x
11 https://doi.org/10.1090/s1079-6762-07-00173-4
12 https://doi.org/10.1137/0329068
13 https://doi.org/10.1512/iumj.2011.60.4322
14 schema:datePublished 2012-12
15 schema:datePublishedReg 2012-12-01
16 schema:description Solutions of the Hamilton–Jacobi equation H(x,−Du(x)) = 1, where H(·, p) is Hölder continuous and the level-sets {H(x, ·) ≤ 1} are convex and satisfy positive lower and upper curvature bounds, are shown to be locally semiconcave with a power-like modulus. An essential step of the proof is the -regularity of the extremal trajectories associated with the multifunction generated by DpH.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree true
20 schema:isPartOf N0b3e2ae2de60403fbda66f5a33d8a838
21 N482690914f65446eb6d6695622925c11
22 sg:journal.1136849
23 schema:name Regularity results for eikonal-type equations with nonsmooth coefficients
24 schema:pagination 751-769
25 schema:productId N16d68f944afe448ca7faba078c6d7539
26 N605dfe01ce0e48c280dc7760e52dbfda
27 Nde9212d1cfdd4e8eaf9b16e0d24291d9
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031022234
29 https://doi.org/10.1007/s00030-011-0150-1
30 schema:sdDatePublished 2019-04-10T18:15
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N4470d08d6cb34a38bac91e2642aeb826
33 schema:url http://link.springer.com/10.1007/s00030-011-0150-1
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N0b3e2ae2de60403fbda66f5a33d8a838 schema:issueNumber 6
38 rdf:type schema:PublicationIssue
39 N16d68f944afe448ca7faba078c6d7539 schema:name doi
40 schema:value 10.1007/s00030-011-0150-1
41 rdf:type schema:PropertyValue
42 N2197d46073ad4cd6ab22cea7a261ccee rdf:first sg:person.014257010655.09
43 rdf:rest N93066e6e69934e7e8ba2991df60a01aa
44 N4470d08d6cb34a38bac91e2642aeb826 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N482690914f65446eb6d6695622925c11 schema:volumeNumber 19
47 rdf:type schema:PublicationVolume
48 N605dfe01ce0e48c280dc7760e52dbfda schema:name readcube_id
49 schema:value 93ca074a6ea4aa2d689a72f7dcb197d0a84a9d7b6d1d30406440b0a16a1f399b
50 rdf:type schema:PropertyValue
51 N93066e6e69934e7e8ba2991df60a01aa rdf:first sg:person.012147216327.96
52 rdf:rest rdf:nil
53 Nde9212d1cfdd4e8eaf9b16e0d24291d9 schema:name dimensions_id
54 schema:value pub.1031022234
55 rdf:type schema:PropertyValue
56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
57 schema:name Mathematical Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
60 schema:name Pure Mathematics
61 rdf:type schema:DefinedTerm
62 sg:journal.1136849 schema:issn 1021-9722
63 1420-9004
64 schema:name Nonlinear Differential Equations and Applications NoDEA
65 rdf:type schema:Periodical
66 sg:person.012147216327.96 schema:affiliation https://www.grid.ac/institutes/grid.463852.e
67 schema:familyName Cardaliaguet
68 schema:givenName Pierre
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012147216327.96
70 rdf:type schema:Person
71 sg:person.014257010655.09 schema:affiliation https://www.grid.ac/institutes/grid.6530.0
72 schema:familyName Cannarsa
73 schema:givenName Piermarco
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09
75 rdf:type schema:Person
76 sg:pub.10.1007/978-0-8176-4755-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007652222
77 https://doi.org/10.1007/978-0-8176-4755-1
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/b138356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007174052
80 https://doi.org/10.1007/b138356
81 rdf:type schema:CreativeWork
82 https://app.dimensions.ai/details/publication/pub.1007174052 schema:CreativeWork
83 https://app.dimensions.ai/details/publication/pub.1007652222 schema:CreativeWork
84 https://doi.org/10.1016/0362-546x(89)90056-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032197658
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/0362-546x(94)e0091-t schema:sameAs https://app.dimensions.ai/details/publication/pub.1001105785
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1090/s0002-9947-06-04195-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027699496
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1090/s1079-6762-07-00173-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015797717
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1137/0329068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062844322
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1512/iumj.2011.60.4322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067514035
95 rdf:type schema:CreativeWork
96 https://www.grid.ac/institutes/grid.463852.e schema:alternateName Centre De Recherche en Mathématiques de la Décision
97 schema:name CEREMADE, Université Paris-Dauphine, UMR CNRS 7534, Place du Maréchal De Lattre, De Tassigny, 75775, Paris Cedex 16, France
98 rdf:type schema:Organization
99 https://www.grid.ac/institutes/grid.6530.0 schema:alternateName University of Rome Tor Vergata
100 schema:name Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133, Rome, Italy
101 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...